

DRAFT TANZANIA STANDARD

Guidelines for Construction of Wooden Boats for the Indian Ocean and Inland Waters

TANZANIA BUREAU OF STANDARDS

BCDC 12 (1829) DTZS

This draft Tanzania Standard was published under the authority of the Board of Directors of Tanzania Bureau of Standards on 2023-mm-dd.

Tanzania Bureau of Standards (TBS) is the statutory national standards body for Tanzania established under the Standards Act No. 3 of 1975, repealed and replaced by the Standards Act No. 2 of 2009.

The Building and Construction Divisional Standards Committee (BCDC), under whose supervision this Tanzania Standard was prepared, consists of representatives from the following organizations:

*College of Engineering and Technology, University of Dar er Salaam

Ministry of Works and Transport (MoWT)

*National Housing Corporation (NHC)

Contractors Registration Board (CRB)

Ardhi University (ARU)

Jeshi la Kujenga Taifa (JKT)

*National Estates and Designing Consultancy Company Ltd (NEDCO)

Architects and Quantity Surveyors Registration Board (AQRB)

Institution of Engineers Tanzania (IET)

*National Construction Council (NCC)

Engineers Registration Board (ERB)

The organizations marked with an asterisk (*) in the above list, together with the following were directly represented on the Technical Committee entrusted with the preparation of this draft Tanzania Standard:

Tanzania Forestry Research Institute (TAFORI) Sokoine University of Agriculture (SUA) Sao Hill Industries Ltd Tanzania International Bee Co. Ltd Tanzania Shipping Agencies Corporation (TASAC)

Tanzania Bureau of Standards P O Box 9524 Dar es Salaam Tel: +255 (22) 2450206/2450949/2450298 Fax: +255 22 2450298 E-mail: info@tbs.go.tz Website: www.tbs.go.tz

Contents

Abbreviations	V
0 National Foreword	1
1 Scope	2
2 References	
3 Terms and definitions	
4 Materials and Fasteners	4
5 Determination of Scantlings	
6 Manufacturing Facilities and Workmanship	
7 Compliance and Boats Identification	
Annex A	
Annex B	
Annex C	
Annex D	
List of figures	
Figure 4. Desta leading dimensions	

List of figures

Figure 1: Boats leading dimensions	4
Figure 2: Component parts of a wooden hull	6
Figure 3: Cross section of a round bilge wooden hull	7
Figure 4: Typical section Chine Hull	8
Figure 5: Sawing of Timber	11
Figure 6: Common types of bolted scarphed joints	13
Figure 7: Typical hooked keel scarph showing position of stopwaters	16
Figure 8: Typical connection of ballast keel to falsekeel	16
Figure 9: Typical scarph connection stem to woodkeel	17
Figure 10: Typical connection of sternpost to keel and counter timber	18
Figure 11: Typical floors	24
Figure 12: Spacing of butts	32
Figure 13: Typical butt straps on single skin hull planking	33
Figure 14: Connection of single skin planking to centreline structure (for normal breadth of planking)	34
Figure 15: Strip planking	35
Figure 16: Arrangement of fastening in double skin hull planking	38
Figure 17: Detail of gunwale for double skin planking	38
Figure 18: Dowel fastening of beam at shelf	40
Figure 19: Butts of deck planking	45
Figure 20: Deck fastening (laid decks)	46
Figure 21: Conformity Label Example	61
Figure 22: Example of Twelve-Digit Hull Identification Number (HIN)	62

BCDC 12 (1829) DTZS

List of tables

Table 1*** Guidance on the selection of timbers for constructional members	9
Table 2: Standard timber density	12
Table 3: Keel, hog, stem, stern post and fastenings for motor, sailing and auxiliary craft	15
Table 4: Frames for Motor. Sailing and Auxiliary Craft	21
Table 5: Floors for motor, sailing and auxiliary craft	26
Table 6: Floor fastenings for motor, sailing and auxiliary craft	27
Table 7: Beam shelf and bilge stringer scantlings and fastenings for motor, sailing and auxiliary craft	28
Table 8: Timber bulkheads	29
Table 9: Bulkhead plating and stiffeners for motor, sailing and auxiliary craft	30
Table 10: Outside and deck planking for motor, sailing and auxiliary craft	31
Table 11: Fastenings for outside end deck planking in motor, sailing end auxiliary craft	36
Table 12: Plywood planking: overlaps and fastenings for motor, sailing and auxiliary craft	39
Table 13: Plywood planking: butts and butt straps for motor, sailing and auxiliary craft	39
Table 14: Beams and hanging knees for motor, sailing and auxiliary craft	42
Table 15:Longitudinal steel items for motor, sailing and auxiliary craft	43
Table 16: Steel angle beams at upper and cabin decks for motor, sailing and auxiliary craft	43
Table 17: Permissible load on timber pillars	47
Table 18: Coachroof coaming and deck thicknesses for motor, sailing and auxiliary craft	48
Table 19: Coachroof and deckhouse beams for motor, sailing and auxiliary craft	48
Table 20: Hard Chine vessels – Keel and Hog	49
Table 21: Hard Chine Vessels Transom	50
Table 22: Transom	51
Table 23: Transverse web frames	52
Table 24: Hard Chine Vessels Floor	53
Table 25: Hard Chine vessels bottom stringers	54
Table 26: Hard Chine vessels Chines	55
Table 27: Chines and Stringers (Single planked hulls)	56
Table 28: Hard Chine Vessels - Beam Shelf/ Sheer Clamp	56
Table 29: Hard Chine Vessels - Hull Planking Thickness	57
Table C.1: Keel, hog, stem, stern post and fastenings for motor, sailing and auxiliary craft	69
Table C.2: Frames for Motor, Sailing and Auxiliary Craft	69
Table C.3: Floors for motor, sailing and auxiliary craft	69
Table C.4: Floor fastenings for motor, sailing and auxiliary craft	69
Table C.5: Beam shelf and bilge stringer scantlings and fastenings for motor, sailing and auxiliary craft	70
Table C.6: Timber bulkheads	70
Table C.7: Bulkhead plating and stiffeners for motor, sailing and auxiliary craft	70
Table C.8: Outside and deck planking for motor. Sailing and auxiliary craft	71

Table	C.9: Fastenings for outside end deck planking in motor, sailing end	auxiliary craft	71
Table	C.10: Beams and hanging knees for motor, sailing and auxiliary cra	ft	71
Table	C.11: Longitudinal steel items for motor. sailing and auxiliary craft		71
Table	C.12: Steel angle beams at upper and cabin decks for motor, sailing	g and auxiliary craft	72
Table	D.1: Hard Chine vessels – Keel and Hog		73
Table	D.2: Hard Chine Vessels Transom		73
Table	D.3: Transom		73
Table	D.4: Transverse web frames		73
Table	D.5: Hard Chine Vessels Floor		
Table	D.6: Hard Chine vessels bottom stringers		73
Table	D.7: Hard Chine vessels Chines		73
Table	D.8: Chines and Stringers (Single planked hulls)		73
Table	D.9: Hard Chine Vessels - Beam Shelf/ Sheer Clamp		74
Table	D.10: Hard Chine Vessels - Hull Planking Thickness		74

BCDC 12 (1829) DTZS

Abbreviations

- BS British Standard
- HIN Hull Identification Code
- HP Horsepower
- ISO International Organization for Standardization
- KW Kilowatt
- LOA Length Overall
- LWL Length Waterline
- MIC Manufacturers Identification Code
- MOE Modulus of Elasticity
- MOR Modulus of Rupture
- TASAC Tanzania Shipping Agencies Corporation
- UK United Kingdom
- WBP Water and Boil Proof
- AS/NZS Australian /New Zealand Standard

DRAFT TANZANIA STANDARD

0 National Foreword

The Tanzania Bureau of Standards is the statutory national standards body for Tanzania, established under standards Act No. 3 of 1975, amended by Act No. 2 of 2009.

This draft Tanzania Standard is being prepared by BCDC 12 Timber structures technical committee under the supervision of the Building and Construction Divisional Committee (BCDC).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. Tanzania Bureau of Standards (TBS) shall not be held responsible for identifying any or all such patent rights.

Guidelines for Construction of Wooden Boats for the Indian Ocean and Inland Waters

1 Scope

- **1.1** These Guidelines, apply to the construction of any new wooden vessel of between 6metres length over all (L_{OA}) to less than 24metres length, constructed under the inspection of the overseeing authority. The Guidelines specifies minimum standard for the design, construction, inspection and certification of the hull, and outfit of wooden vessels for the Indian Ocean and Inland Waters.
- 1.2 "Surveyor" refers to an officially appointed Surveyor by the overseeing authority
- **1.3** For certification of build to this Standard, vessels are to be completed in accordance with the specifications and drawings approved by the overseeing authority. Any variations to the scantlings, materials, equipment and layout as set out in the approved specification, drawings, and these Guidelines, are to be submitted to the overseeing authority for approval, prior to the proposed variation being put in hand.
- **1.4** Workmanship is to be in accordance with boatyard operating procedures approved by the overseeing authority and to the approval of the Surveyor.
- **1.5** All vessels are to comply fully with current statutory requirements.
- **1.6** Wooden vessels of unusual form and dimensions or of a design not covered by these Guidelines, may receive individual consideration for approval upon submission of full details to the overseeing authority.
- **1.7** Compliance with these Guidelines does not relieve the designer or boatbuilder of a vessel of their responsibilities to the owner for the specification requirements or performance of the completed vessel.
- **1.8** The boatbuilder is to provide the Surveyor(s) with full access to the facilities during normal working hours to carry out their duties in surveying for compliance with these Guidelines.
- 1.9 These Construction Guidelines may be used as guidance for the repair of the wooden vessels.
- **1.10** Vessel types are not covered by the requirements of these construction Guidelines including the following:
 - Vessels of simple construction including vessels such as rafts and dug-out canoes;
 - Vessels judged by the overseeing authority to be outside the scope of this guideline.

2 References

The following documents were referred on preparation of these Guidelines:

BS 1088:2018 - Marine plywood. Requirements

AS/NZS 2272:2006 - Plywood-Marine

TZS 656:2021 - Copper/chromium/arsenic composition for the preservation of timber — Specification

BS EN 301:2017- Adhesives, phenolic and aminoplastic, for load-bearing timber structures. Classification and performance requirements

BS 3452:1962 - Specification for Copper/Chrome water-borne wood preservatives and their application

ISO 2081:2018-Metallic and other inorganic coatings — Electroplated coatings of zinc with supplementary treatments on iron or steel

ISO 12215-1—Small craft - Hull construction and scantlings - Part 1: Materials: Thermosetting resins, glass-fibre reinforcement, reference laminate

ISO 12215-3—Small craft - Hull construction and scantlings - Part 3: Materials: Steel, Aluminium alloys, Wood, other materials

ISO 12215-4-Small craft - Hull construction and scantlings - Part 4: Workshop and manufacturing

ISO 12215-5—Small craft - Hull construction and scantlings - Part 5: Design pressures, design stresses,

BCDC 12 (1829) DTZS

scantling determination

ISO 12215-6 - Small craft - Hull construction and scantlings - Part 6: Structural arrangements and details

Other references

Merchant Shipping Cap.165

Merchant Shipping (Small Ships, Local Cargo Ship Safety, Small Ship Safety, Surveys and Inspections for Vessels Engaged on Local and Coastal Voyages, Inland Waters) Regulations, 2006

Rules and regulations for the classification of Yatchs and Small Craft, Part 2 Hull Construction, Lloyd's Register of Shipping

Uniform Shipping Laws Code 2008, Section 5M: Construction -Timber (CTH, NSW, NT, QLD, SA, TAS, VIC & WA)

The Commercial Timbers of Tanzania by J.M. Bryce and Revised by A.W. Chihongo. Third edition 2003, published by Tanzania Forestry Research Institute

Sea Fish Authority (UK), Construction Standards for Wooden fishing vessels

3 Terms and definitions

For the purpose of this Standard the following terms and definitions apply.

3.1 Length

- **3.1.1** The overall length, L_{OA} , is the distance, in metres, measured parallel to the static load waterline from the fore side of the stern to the after side of the stern or transom, excluding rubbing strakes and other projections.
- **3.1.2** The waterline length, *L_{WL}*, is the distance, in metres, measured on the static load waterline from the fore side of the stem to the after side of the stern or transom.

3.1.3 The scantling length, *L*, is to be taken as:

$$L = \frac{L_{OA} + L_{WL}}{2}$$
 metres (See Figure 1)

3.1.4 Amidships is to be taken as the middle of the static load waterline.

3.2 Breadth/ Beam

3.2.1 The breadth/beam, *B*, is the extreme breadth, in metres, measured between the outer sides of the hull, excluding rubbing strakes or other projections.

3.3 Depth

- **3.3.1** The depth, *D*, is the distance, in metres, at amidships, measured from the bottom of the keel, or ballast keel if fitted, to the top of the main deck or gunwale at side.
- **3.3.2** It is assumed that a sailing or auxiliary craft is fitted with a ballast keel. If a centreboard is fitted the depth, *D*, is, in general, to be the measured depth increased by 15 percent, but will be considered for each individual design.

3.4 Scantling dimensions

3.4.1 The dimensions of the structural parts; often described in terms of moulding (depth) and siding (width).

The **moulded dimension** of any piece is its dimension measured in from the outside toward the interior of the hull.

The **siding** is the direction at right angles to the moulded dimension that is not running along the length of the wood grain.

Figure 1: Boats leading dimensions

3.5 Speed

3.5.1 The speed, V, is the maximum speed, in knots.

In general, the guideline applies to vessels operating at moderate speeds (maximum operating speed 20 knots). Vessels operating at higher speeds will require special consideration by the overseeing authority.

4 Materials and Fasteners

4.1 General Characteristics

- **4.1.1** All materials used in the construction of a new vessel are to be in accordance with the approved building specification.
- **4.1.2** When selecting materials and equipment to be used in the vessel construction, designers and boatbuilders of new vessels will need to pay special regard to the working conditions to which the vessel will be subjected, and should take all measures to ensure that any material or appliance fitted in accordance with the requirements of these Guidelines is suitable for the purpose intended, having regard to its location in the vessel, the area of operation, and the weather conditions which may be encountered by the vessel.

BCDC 12 (1829) DTZS

4.1.3 Boatbuilders are advised that any requirement for goods or materials to comply with specified Guidelines shall be satisfied by compliance with a specification sufficiently detailed to permit assessment for goods or materials of an innovative nature (or subject to innovative processes of a manufacture such that they cannot comply with a specification) and which fulfil the purpose provided by the specified Guidelines; provided that the proposed Guidelines, code of practice, specification or technical description provides, in use, equivalent levels of safety, suitability and fitness for purpose.

4.2 Timber species

- **4.2.1** The species of timber which may be used for the various constructional members see Figure 2, 3 and 4 are given in Table 1 and Annex A. It is presumed that the designer will relate the known characteristics, e.g., swelling and shrinkage, strength, density, bending and working capabilities, of particular species to the constructional design.
- **4.2.2** A general indication of their known performance in service has been experienced, but in view of the differences in construction methods and in the use of the craft, design considerations may influence the selection of species.
- **4.2.3** The inclusion of a timber in Table 1 does not imply that all material available under the particular name is suitable for the use shown, and care must be exercised to ensure that an appropriate grade is obtained.

Figure 3: Cross section of a round bilge wooden hull

- Key: 1. Keel 2. Hog 3. Hitch floor
- 4. Web frame
- Bottom stringer
 Bottom planking
 Gusset or chock
- 8. Chine
- 9. Topside stringer
 10. Topside frame
- Topside frame
 Topside planking
 Beam shelf
 Hanging knee
 Deck beam
 Deck plank
 Sheer clamp

Table 1*** Guidance on the selection of timbers for constructional members (Other type of timber species may be used for different construction members and should meet the requirements for density stated under Table 2)

SN.	Construction Members	Timber
1	Keel, false keel, Deadwood, Ballast keel and Hog	Adina
	, , , , , , , , , , , , , , , , , , ,	Mkongo (East African Afzelia)
		Muhuhu
		Nkunya
		Loliondo
		Mkwaju
		Mninga
		Mwangaa (East African
		Afrormosia)
2	Stem	Muninga
		Mvule
		Mkongo (East African Afzelia)
		Teak
3	Sternpost	Mkongo (East African Afzelia)
-		Mninga
		Mninga maii
		Muhuhu
		Nkunva
4	Bilge and chine stringer	Mkongo (East African Afzelia)
	Beam shelf, stringer, Bulkheads and clamp	East African Mahogan
		Mtondoo
		Mtandarusi
		Mfimbo
		Nkunva
		Mninga
		Teak
5	Floors, Engine beds	East African Afrormosia
		(Mwangaa)
		Muhuhu
		Nkunya
		Knobthom
		Mkwaju
		Mninga
	XV	Teak
6	Frames	Mkongo (East African Afzelia)
		Mtanga
		Mvule
		Nkunya
	S.O.	Mninga
		Mkoko (Rhizophora mucronata)
7	Hull planking	Mkongo (East African Afzelia)
		Muhuhu
		Nkunya
		Mninga/ mninga maji
		Mvule
		Mtondoo
		Teak
8	Deck planking	Mkongo (East African Afzelia)
		East African mahogany
		East African Comphorwood
		Muhuhu

SN.	Construction Members	Timber
		Mkwaju
		Mvule
		Teak
9	Beams and carlings	Mkongo (East African Afzelia)
		Muhuhu
		Nkunya
		Loliondo
		Mkwaju
		Mninga
10	Knees	Mkongo (East African Afzelia)
		Muhuhu
		Nkunya
		Loliondo
		Mkwaju
		Mninga
		Mkoko (Rhizophora mucronata)

*** The species of timber which may be used for the various constructional members, see Figure 2, 3 and 4 are given in Tables and Annex A. For woods with local names, one can refer to Annex A to identify the presented name.

4.3 Timber quality

- **4.3.1** The timber is to be of good quality and properly seasoned and is to be free from heart rot, sapwood, decay, insect attack, splits,checks, shakes and other imperfections which would adversely affect the efficiency of the material. It is also to be generally free from knots, although an occasional sound intergrown knot would be acceptable.
- **4.3.2** The timber for the centreline members is to be reasonably seasoned and, where there is a risk of excessive drying-out, it is to be coated with boiled linseed oil or varnish, as soon as erected, to prevent splitting.
- **4.3.3** The material for hull and deck planking is to be generally plain grained and, for deck planking, is to be quarter sawn (*see Figure 5*).

Figure 5: Sawing of Timber

4.4 Timber moisture content

- **4.4.1** The timber is to be stored under dry conditions and is to have an air-dried moisture content of not more than about 20 % before use. Care is to be taken to avoid excessive drying-out during building.
- **4.4.2** The moisture content of material which is to be glued is to be about 15 %. Contents slightly above this value are recommended when resorcinol glues are used, and contents slightly below this value are recommended when phenolic or urea-formaldehyde resins are used. It is recommended that the material to be used in laminating members should be kiln-dried to about 15 %.
- **4.4.3** The moisture content of hull and deck planking which is to be sheathed using synthetic resins is to be as low as practicable, to avoid affecting the efficiency of the sheathing bond.

4.5 Plywood

- **4.5.1** The plywood used in the hull and deck structure is to be of an approved high-grade marine quality with good quality face and core veneers of a durable hardwood species and made with high standards of workmanship in the lay-up and manufacture. The veneers are to be bonded with a WBP (water and boil proof) type adhesive, although in special circumstances an adhesive of slightly lesser durability will be considered. Material complying with BS 1088, or other equivalent specification, is acceptable.
- **4.5.2** Plywood sheets are to be stored flat on a level bed and under dry, well-ventilated conditions. The moisture content is not to exceed 15%.

4.6 Timber preservatives

- **4.6.1** Preservatives are to be of suitable types, either from the waterborne fixed salt group such as copper chrome type to BS 3452 and copper-chrome-arsenic types to TZS 656, or from the organic solvent group, such as naphthenates of zinc and copper and pentachlorophenol. Other types of preservatives will be considered.
- **4.6.2** In the selection of type of preservative, due regard should be paid to the effect on varnish and paint coatings, and on synthetic resins, where sheathing is to be applied.

4.7 Timber adhesives

- **4.7.1** The glues to be used in the construction and lamination of structural members are to be of a gapfilling resorcinol or phenolic type, such as those complying with BS EN 301, or other adhesives which have similar durability and can give a WBP bond.
- **4.7.2** The glues are to be mixed and applied in accordance with the manufacturer's instructions with regard to the shop temperature and humidity requirements. Attention is also to be paid to the application techniques for the species of timber being glued, and the manufacturer's advice should be sought in the working of difficult timbers and the effect of preservatives on the adhesive.

4.8 Metal fastenings

4.8.1 The materials used for fastenings are to be a suitable composition of the following metals: -

Copper

Gunmetal Galvanized iron Galvanized steel Silicon bronze Aluminium bronze Stainless steel Monel

- **4.8.2** Steel and iron fastenings are to be hot-dipped galvanized, but black iron keel bolts may be coated with a suitable composition. Small screw fastenings below about 20 mm in length which cannot be satisfactorily hot-dipped may be electroplated zinc, provided that the coating is of a reasonable thickness and to an approved specification, such as ISO 2081 Grade Zn 10.
- 4.8.3 Stainless steel fastenings are to be of a suitable grade of austenitic steel.
- **4.8.4** Gunmetal fastenings may be used, but where increased strength and corrosion resistance is desired, it is recommended that silicon bronze be used. Aluminium bronze may be used, in the larger bolt sizes, where increased strength is desired. Brass fastenings are not to be used for structural purposes.

4.9 Other materials

- **4.9.1** Other materials intended for structural use are to be of good quality, suitable for the purpose intended. Details of these materials are to be stated on the relevant construction drawings.
- **4.9.2** Suitable arrangements are to be made to insulate aluminium alloys from timber and dissimilar metals. Paints containing either lead, mercury or copper are not to be used in conjunction with these alloys.

5 Determination of Scantlings

5.1 Application and General

- **5.1.1** The scantlings of motor, sailing and auxiliary craft of conventional form and proportions, up to the length of 24 meters are to be determined from respective scantling tables.
- **5.1.2** The scantlings will be specially considered where the craft is of unusual design, form or proportions or where either the speed exceeds 20 knots or the length exceed 24metres.

5.1.3 Timber density

The scantlings for the timber members shown in Tables are based on the following standard densities, which are for an air-dried condition of about 15% moisture content: -

SN.	Construction member	Minimum Density(kg/m ³)
1	Frames	720
2	Floors	720
3	Keel	
4	Stem	
5	Sternpost	640
6	Deadwood	
7	Counter timbers	
8	Hull planking	
9	Shelves and clamps	
10	Stringers	560
11	Beams and knees	
12	Coach roof coamings	
13	Deck planking	430

Table 2: Standard timber density

5.1.4 Where the density of the proposed timber differs from the standard density shown in 5.1.3, the tabular siding, *s*, thickness or modulus, *sm*², is to be increased or decreased by direct proportion in relation to the ratio of the densities, i.e.

Required siding, thickness or modulus = Tabular siding, thickness or modulus $\times \frac{s}{w}$

Where:

S = the standard density of the timber, in kg/m³

W = the density of the proposed timber, in kg/m³

m = the tabular moulding.

The tabular siding or thickness is, however, not to be decreased by more than 6 %, except where specifically allowed.

5.1.5 The scantlings of laminate members are to be based on the density of the natural timber and are not to be corrected for the final density in the laminated condition.

5.1.6 Laminated timber scantlings

Where the centerline assembly, bilge stringers, beam shelves, chine's or beams are of glued laminated construction, the scantlings are to be the same as those determined for solid timber, with the exception of frames and beams as indicated in 5.2.5.3.1 and 5.2.10.1.3, respectively.

5.2 Scantlings for Round Bilge Vessels

5.2.1 Wood keel

- **5.2.1.1** The scantlings of wood keels or, for motor craft, the wood keel and hog are given in Table 3. The Rule moulding is to be maintained throughout but the siding may be tapered towards the ends where it is to be not less than the Rule siding of the stem or sternpost. The scantlings of craft having deep fin keels will be specially considered.
- **5.2.1.2** The rabbet for the garboard strake is to have a faying surface not less than twice the thickness of the garboard strake or, for plywood, as given in Table 12
- **5.2.1.3** When the length, *L*, does not exceed 10 m the wood keel is to be in one length. In larger craft, the keel should, where possible, be in one length but when a scarph is necessary in the centerline structure it is to have a length, L, not less than 6 times the moulding, *m*, of the item. The scarph is to be of the hooked or tabled type if bolted (*see Figure 6*), or plain type without lips if glued. The depth of the lips is to be about $\frac{1}{4}$ to $\frac{1}{7}$ of the moulding.

Tabled scarph

Tabled hooked scarph

Figure 6: Common types of bolted scarphed joints

- **5.2.1.4** Softwood stop waters are to be fitted in bolted scarphs in keels and other centreline structure, in way of plank back rabbet and in other positions where considered necessary by the Surveyor. For typical details, *see Figures.7* and *8*.
- **5.2.1.5** Scarphs in the keel and hog are to be at least 1.5m apart and the keel scarph, where fitted, is to be clear of engine seating and, if practicable, of the mast step.
- **5.2.1.6** Where the keel is cut for a centreboard the siding is to be increased.

5.2.1.7 Where a mast passes through the deck, the heel is to be supported by a suitable mast step extending well forward and aft. The step is to be adequately fastened to the floors and to the wood keel

Length,	M	oulding and	d siding of ke	el	Siding	and	Siding and	moulding of	Diameter of bolts, mm,		
L, m	Sailing and	auxiliary	Mo	otor	moulding o heel, r	f stem at nm	stem at sternp	head and ost mm			
	Moulding. mm	Siding, mm	Minimum siding of keel, mm	Sectional area of keel or keel and hog, cm ²	Sailing and auxiliary	Motor	auxiliary		Centreline structure	Keel scarph	
6	75	150	70	80	90	75	75	75	10	8	
8	90	185	80	130	105	90	90	85	10	8	
10	110	220	90	190	120	110	100	95	12	8	
12	125	255	105	250	140	125	115	105	14	10	
14	140	285	115	310	155	140	125	115	14	12	
16	160	320	125	380	170	160	140	125	16	12	
18	175	355	140	450	190	175	150	140	18	12	
20	195	385	150	520	205	195	165	150	20	14	
22	210	410	165	600	220	210	175	160	20	14	
24	230	435	180	690	240	230	190	170	20	14	

Table 3: Keel, hog, st	em, stern post a	and fastenings for	motor, sailing a	nd auxiliary craft
	o, o.o pool o			

NOTES

1. In motor craft, the moulding of the keel is to be not less than the siding, and the moulding of the hog is to be not less than twice the thickness of the outside planking.

2. The Table scantlings are based on a timber having a standard density of 640 kg/m3 and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.

Oral 40.

- **5.2.1.8** Where a wood false keel is fitted abaft the ballast keel a suitable scarph or tenon is to be arranged, see Figure 8.
- 5.2.1.9 For size of fastenings, see Table 3.

5.2.1.10 Structural arrangements in way of centreboard casing will be specially considered.

Figure 7: Typical hooked keel scarph showing position of stopwaters

Scarphed keel

Figure 8: Typical connection of ballast keel to falsekeel

5.2.2 Stem

- **5.2.2.1** The scantlings of the stem are given in Table 3 and are to be uniformly tapered from head to heel. The scantlings at the heel may be required to be increased, depending on the shape of the forefoot, to enable an adequate scarph to the keel to be arranged, see *Figure 8*.
- **5.2.2.2** Where the hull form is such that there is a large radius at the stem head a suitable apron (or fashion pieces) is to be provided to give adequate landing for the outside planking.
- 5.2.2.3 For size of fastenings, see Table 3.

5.2.3 Sternpost

- **5.2.3.1** The scantlings of the sternpost are given in Table 3. The sternpost may be tapered to suit the form of the craft but the siding at the after edge of the back rabbet is to be not less than that required by Table 3 and care is to be taken to ensure there is adequate material to take the fastenings of the outside planking.
- **5.2.3.2** The lower end of the sternpost is to be tenoned or half-lapped to the keel. An inside deadwood or knee is to be fitted and adequately through fastened to the sternpost, and false keel, if fitted, see *Figure 10*.
- 5.2.3.3 For size of fastenings, see Table 3.

5.2.4 Counter timber

- **5.2.4.1** The area of the counter timber at its forward end is to be not less than the Rule area of the sternpost and may gradually be reduced to 75 % of this area at its after end.
- **5.2.4.2** The counter timber is to be securely fastened to the sternpost and it is recommended that, where practicable, the sternpost should be tenoned or scarphed to the counter timber and through fastened.
- 5.2.4.3 For size of fastenings, see Table 3

Figure 10: Typical connection of sternpost to keel and counter timber

5.2.5 Framing

5.2.5.1 General

- **5.2.5.1.1** The hull is to be provided with an efficient system of side and bottom framing in conjunction with stringers, bulkheads or web frames to provide transverse rigidity.
- **5.2.5.1.2** The framing may be arranged transversely or longitudinally or may be a combination of both.
- 5.2.5.1.3 All frames are to be bevelled or formed to fay closely against the planking.
- **5.2.5.1.4** Where the heels of frames terminate at the centreline construction members they are to be let into and fastened to them unless floors are fitted at every frame.
- 5.2.5.2 Types of frames
- **5.2.5.2.1** The following types of frames may be used, subject to the limitations given in 5.2.5.2.3 and 5.2.5.2.4: -
 - Type 1 Bent frames only
 - Type 2 Grown frames only (Sawn frames)
 - Type 3 Laminated frames only
 - Type 4 Steel frames only
 - Type 5 Grown, laminated or steel frames with 1 bent frame between
 - Type 6 Grown, laminated or steel frames with 2 bent frames between
 - Type 7 Grown, laminated or steel frames with 3 bent frames between
- 5.2.5.2.2 Alternative framing systems to those in 5.2.5.2.1 will be specially considered.
- **5.2.5.2.3** The use of Type 1 is to be confined to craft having a depth, D, not exceeding 3.0 m for sailing and auxiliary or 2.7 m for motor craft, and Types 5, 6 and 7 are to be confined to depths, D, not

exceeding 3.6 m and 3.0 m, respectively.

- **5.2.5.2.4** Where the depth, *D*, exceeds 3.6 m for sailing and auxiliary craft or 3.0 m for motor craft the framing must be Type 2, 3 or 4.
- 5.2.5.3 Scantlings
- 5.2.5.3.1 The scantlings and spacing of the various types of frames are given in Table 4.
- **5.2.5.3.2** Where the actual frame spacing of timber frames differs from that given in Table 4 the strength of grown, bent or laminated frames is to be modified in direct proportion, i.e.

Actual (sm^2) = Table $(sm^2) \times \frac{Actual spacing}{Table spacing}$

where *s* and *m* are the siding and moulding, respectively; the Table siding is to be that after correction for density. *See 5.1.4.*

- **5.2.5.3.3** In no case is the mean moulding of grown, bent or laminated frames to be less than two-thirds of the actual siding except where an increase in the siding is required by 5.2.5.3.6. In all cases the siding is to be suitable for the required fastenings.
- **5.2.5.3.4** Where the spacing of steel frames differs from that given in Table 4 the section modulus is to be modified in direct proportion.
- **5.2.5.3.5** The scantlings determined from Table 4 are to be maintained for $\frac{3}{5}L$ amidships. Forward of and abaft this region the following reductions may be made: -

Bent or laminated frames	Siding reduced by 10 %.
Grown frames	Moulding at heel and siding at head and heel reduced by 20 %.
Steel frames	Thickness reduced by 10 percent.

5.2.5.3.6 In sailing and auxiliary craft, the framing adjacent to the mast is to be increased each side as given below or equivalent arrangements provided: -

Type 1:	Bent frames only	Three grown or laminated frames of Type 2 or 3 scantlings (see Table 4.5.1) are to be fitted or, alternatively, the siding of three bent frames increased by 60 %.				
Type 2:	Grown frames only	The siding of three frames increased by 50 $\%$				
Type3:	Laminated frames only					
Type 4:	Steel frames only	Reverse angles or face flats of the size required for plate floors are to be fitted on two frames if D does not exceed 3.3 m or on three frames when D is 3.3 m or greater.				
Types 5,	Grown, laminated or steel	The siding of three grown or laminated				
6 and 7:	frames with bent frames between	frames increased by 50 % or reverse				
		angles or face flats fitted to three steel frames				

- 5.2.5.3.7 Where internal ballast is fitted the frames may be required to be increased in strength.
- 5.2.5.4 Grown frames
- **5.2.5.4.1** Grown frames are to be cut to shape from timber having the required curvature of grain.
- **5.2.5.4.2** The siding of each grown frame is to be uniform over its length and the moulding is to be a fair taper from heel to head.
- **5.2.5.4.3** Grown frames may be butted or scarphed. Scarphs are to be glued and have a length not less than 6 times the siding. Where frames are butted, the butts are to be close fitted and side clamps arranged. The clamps are to have a sectional area not less than that of the frame and a length, not less than 12 times the frame siding. The clamp is to be through fastened to the frame by not

less than three fastenings on each side of the butt and is to fay closely to the planking.

5.2.5.5 Bent frames

5.2.5.5.1 The siding and moulding of bent frames are to be uniform over the length of the frame. Each frame is to be in one piece from keel to gunwale and, where the form is suitable, may be continuous from gunwale to gunwale.

Dep	th, D, m	Тур	be 1 Be frames	ent wood s only	Туре	2 Grov	vn fran	ne only	L fr	Type amina ames o	3 ted only	Type 4 Ste	el frame	es only	Type 5, 6, and 7 Combination of grown, laminated and ste frames with intermediate bent wood fram				and steel od frames							
or ng d		E E	mm	, mm	mm	, mm	, mm	ling. n	ipacing m	pacing m	spacing m	E	Moul m	ding, m	oacing, n	E E	ding n	pacing n	Frame		Frame Spacing mm	Intern te b wo fra	nedia ent od me	Spacing of ste	f grown. Lai eel frames n	minated or nm
Mot	Saili an auxili	Siding	Mould	Frame S ,mr	Siding	At heel	At head	Frame SI ,mr	Siding	Mould Mould Frame SI mm	Mould mn Frame S mn	Scantling mm	Modulus cm ³		Siding, mm	Moulding mm	One bent frame between Type 5	Two bent frame between Type 6	Thee bent frame between Type 7							
1.5	1.8	24	19	155	24	31	24	205	25	25	205	30 x30 x3	0.7	205	25	20	365	470	545							
1.8	2.1	34	25	170	34	40	31	230	31	34	230	30 x 30 x 3	0.8	230	31	23	405	505	580							
2.1	2.4	40	30	185	42	50	37	255	37	43	255	35 x35 x4	1.2	255	37	26	440	540	620							
2.4	2.7	48	36	200	52	61	46	280	43	51	280	45 x45 x4.5	2.0	280	40	29	475	580	655							
2.7	3.0	56	40	215	62	74	55	305	50	61	305	50 x50 x5	3.0	305	43	33	515	620	695							
3.0	3.3	65	45	230	72	87	65	330	57	74	330	60 x60 x5.5	4.9	330	47	37	565	665	745							
3.3	3.6				81	100	80	355	62	87	355	65 x65 x 8	7.9	355	50	43	620	725	800							
3.6	3.9				90	117	98	380	69	105	380	75 x 65 x 8.5	11.5	380												
3.9	4.2				100	140	117	405	78	126	405	85 x65 x 8.5	14.6	405												

Table 4: Frames for Motor. Sailing and Auxiliary Craft

NOTES

1. For Imitation on use of Types 1, 5, 6 and 7, see 5.2.5.2.3 and 5.2.5.2.4

2. The Table scantlings of timber frames are based on a timber having a standard density of 720 kg/m³, and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.

3. The frame spacing given in the Table is measured from centre to centre or, for steel frames, from heel to heel of angles.

4. Where the spacing differs from that given in the Table, the value of sm^2 (or, for steel frames, the section modulus) is to be modified in direct proportion.

5. Where Types 5, 6 and 7 are adopted, the scantlings of the grown, laminated, or steel frames are to be as required for Types 2, 3 or 4. respectively.

5.2.6 Floors

5.2.6.1 General

- **5.2.6.1.1** Wood floors are to be cut from timber having a suitable grain or may be laminated.
- **5.2.6.1.2** Where, at the ends, the frames are continuous across the centreline structure, floors are not required but, where practicable, the frames are to be attached to the centreline structure by two through fastenings.
- **5.2.6.1.3** Limber holes are to be provided in the bottom structure as required for efficient drainage of the craft.

5.2.6.2 Type of floors

5.2.6.2.1 The type of floor to be fitted is dependent on the frame type adopted as follows; -

Type 1:	Bent frames only	(a) Strap floors on every frame within $3/5 L$ amidships (on alternates if <i>D</i> does not exceed 2.7 m for sailing and auxiliary craft or 2.4 m for motor craft) and on every third frame forward and aft.
		(b) Angle floors spaced as for strap floors in (a).
		(c) Where $3/5 L$ amidships falls within the waterline length floors are to be on alternates to end of waterline.
		(d) The fitting of wood floors in association with bent frames will be specially considered.
Type 2:	Grown frames only	(a) Wood floors on every frame.
Туре 3:	Laminated frames only	(b) Steel floors on every frame.
		(c) Strap floors on every frame.
		(d) Angle floors on every frame.
Type 4:	Steel frames only	(a) Steel plate floors at every frame.
Types 5 and 6:	Grown, laminated or steel	(a) On grown and laminated frames as for Type 2.
	frames with I or 2 bent frames	(b) On steel frames as for Type 4.
	6	(c) On bent frames as for Type 1 within $3/5L$ amidships. If <i>D</i> does not exceed 2.4 m no floors are required on bent frames outside $3/5L$ amidships.
Type 7:	Grown, laminated or steel frames with 3 bent frames	(a) As for Types 5 and 6 but a floor as required for Type 1 is to be fitted to the middle-bent frame.

N°.

Figure 11: Typical floors

*To be checked into centreline member where required by 5.2.5.1.4

5.2.6.3 Scantlings and construction

5.2.6.3.1 The scantlings of floors are to be as given in Table 5 and the lengths of arms, etc., are to be

measured as shown in figure 11. At the ends of the craft the length of arms need not exceed onethird the length of the frame.

- **5.2.6.3.2** The cross-sectional area at the ends of the arms is to be not less than half that given in Table 5 for the middle line.
- **5.2.6.3.3** Where bolts attaching the ballast keel pass through wood floors, the siding of the floors for the breadth of keel is to be not less than 3 times the bolt diameter. It may be tapered to the Rule siding at the ends of the floors.
- **5.2.6.3.4** Angle steel floors are to be fitted on top of bent frames and it is recommended that this arrangement be adopted when angle floors are fitted to grown frames.
- **5.2.6.3.5** Where angle floors are fitted to grown frames it is recommended that they be fitted so that the frame fits into the bosom of the angle with a lug fitted to take the throat fastening.
- **5.2.6.3.6** Steel plate floors are to be stiffened at the upper edge with a reverse angle, face flat or a flange having the same breath as the Rule angle. The thickness of flanged floors is to be increased by 10 %. The bottom angle in way of the keel is to be 2.5 mm thicker than the floor, and its flange is to be sufficient to take the ballast keel bolts or throat fastenings.
- **5.2.6.3.7** In the machinery space of motor craft, steel plate floors are to be stiffened at the upper edge with a face flat and the thickness of the floors increased by 1 mm above that required by Table 5.

Dept	h, D. m		Floors on grown or laminated frames						Floors on bent wood frames				Steel plate floors on grown or steel frames, mm	
Motor	Sailing and	Length r	of arms. nm	Strap f mr	loors. n	Wood flo middle	ors at line	Steel angle bar	Length of arms	Strap rr	floors. m	Steel angle bar mm	For 3/5L amid-	At ends beyond 3/5L amid-ship
	auxiliary	For 3/5L amid-	Beyond 3/5L amid-	At throat	At point	Moulding mm	Siding mm	mm	mm	At throat	At point		ship	
1.5	1.8	380	250	25 xl0	20 x 10	55	25	30 x30 x5	250	25 x 6	15 x 6	25 x 25 x 5	150 x3	110 x3
1.8	2.1	430	300	35 x 13	30 x10	75	35	35 x35 x6	300	25 x 9	17 x 6	25 x 25 x 5	190 x3	140 x 3
2.1	2.4	480	350	45 x 16	40 x10	95	45	45 x45 x5	350	25 x12	19 x 6	30x30x5	230 x4	170x4
2.4	2.7	530	390	50 x 19	45 x 10	115	55	50 x50 x5	390	27 x12	21 x 6	35 x35 x5	260 x4	190 x4
2.7	3.0	580	430	55 x22	50 x 12	135	62	55 x55 x6	430	29 x 15	24 x6	40 x40 x4	280 x4	210 x4
3.0	3.3	630	480	62 x25	53 x 14	155	70	65 x65 x7	480	32 x16	26 x6	40 x40 x4	300x5	230 x4
3.3	3.6	680	530	70 x28	56 x 16	170	80	75 x75 x7	530	35 x17	29 x6	40 x40 x4	320 x5	240 x4
3.6	3.9	730	570	75 x 31	60 x 18	185	90	80x80x7	-	-	-	-	340 x6	250 x5
3.9	4.2	780	620	80 x31	63 x20	200	100	90x75 x7	-	-	-	-	360 x6	260 x5

Table 5: Floors for motor, sailing and auxiliary craft

NOTE

The Table scantlings of timber floors are based on a timber having a standard density of 720 kg/m³ and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4

oralitor

Depti	n, D, mm	Diameter of bol	ts in throat, mm	Diameter of bo	lts at arms, mm	
Motor	Sailing and auxiliary	Grown laminated or steel frame	Bent frame	Grown laminated or steel frame	Bent frame	
1.5	1.8	8	6	6	6	
1.8	2.1	10	8	8	6	
2.1	2.4	12	8	8	6	
2.4	2.7	12	10	10	8	
2.7	3.0	14	12	12	8	
3.0	3.3	18	12	12	10	
3.3	3.6	20	12	12	10	
3.6	3.9	20	-	14	-	
3.9	4.2	20	-	16	-	

Table 6: Floor fastenings for motor, sailing and auxiliary craft

NOTES

1. Throat to keel; not less than 2 bolts (see 5.2.6.4.3).

2. Arms to frames:

3. Bolts when arm length does not exceed 250 mm,

4. Bolts when arm length exceeds 250 mm.

5.2.6.4 Fastenings

5.2.6.4.1 The size of the floor fastenings are to be as given in Table 6.

- **5.2.6.4.2** There are to be not less than three fastenings in each arm where the length of arm does not exceed 250 mm or four when the arm is 250 mm or greater.
- 5.2.6.4.3 The throat is to be attached to the wood keel by not less than two through bolts where practicable.

5.2.7 Beam shelf and clamp, bilge stringers, breast hooks and bottom girders

5.2.7.1 Beam shelf

- **5.2.7.1.1** The cross-sectional area of beam shelf for 3/5L amidships is to be as given in Table 7. Outside this length the area may be gradually reduced to the ends where it may be 25 % less than that amidships.
- **5.2.7.1.2** The area of beam shelf determined from Table 7 is to be that clear of beams; the section removed for the beam end is not to impair the efficiency of the shelf.
- **5.2.7.1.3** Where the beam shelf is not fitted in one length, a plain glued scarph is to be arranged. Scarphs are to be suitably positioned in relation to joints in other longitudinal members and to hanging knees, etc. The face of the scarph is generally to be in the vertical plane.
- **5.2.7.1.4** Where there is a raised deck, it is recommended that the main beam shelf be carried to the ends. Where, however, this is not done suitable arrangements are to be made to maintain the longitudinal continuity of the shelf, and the frame scantlings in way may be required to be increased.
- **5.2.7.1.5** The beam shelf is to be attached to each frame by one through fastening where the moulding of the shelf does not exceed 180 mm and by two through fastenings where the moulding exceeds 180mm. The size of fastenings is given in Table 7.
- **5.2.7.1.6** Where the framing is of Type 5, 6 or 7 (see 5.2.5.2.1), chocks are to be fitted between the intermediate bent frames and the shelf.
- **5.2.7.1.7** Lugs are to be fitted to steel frames to take the shelf fastenings.
- **5.2.7.1.8** Where steel frames are fitted in association with steel beams, a beam shelf is not required but a deck stringer plate; a sheer strake and a stringer angle of the scantlings given in the Table 15 are to be fitted. Beam knees are also to be provided in accordance with 5.2.10.5.2.
- 5.2.7.1.9 For size of fastenings, see Table 7.
- **5.2.7.2** Beam clamp
- **5.2.7.2.1** In way of the mast in sailing and auxiliary craft, a clamp is to be fitted to the inboard side of the shelf with its upper surface faying closely to the underside of the beams. Alternatively, the clamp

may be fitted below the shelf and it is to fay closely to the shelf and to the frames.

- **5.2.7.2.2** The length of the clamp is generally to be not less than the breadth of the craft in way of the mast, and its cross-sectional area is to be not less than 75 % of the beam shelf area at the centre and may be tapered to 50 % of this section at the ends.
- **5.2.7.2.3** The clamp is to be through fastened to the beams or frames as appropriate
- 5.2.7.2.4 Where steel construction is adopted, see 5.2.10.5.6.
- 5.2.7.3 Bilge stringer
- **5.2.7.3.1** A bilge stringer is to be fitted where the framing is Type 1 (bent only) or Type 7 (three bents between grown, laminated or steel), or where the length, *L*, exceeds 9.0 m for Types 2, 3, 5 and 6. For steel construction (Type 4), see 5.2.7.3.9
- **5.2.7.3.2** The cross-sectional area of bilge stringers for 3/5L amidships is to be as given in Table 7. Outside this length the area may be gradually reduced to the ends where it may be 25 % less than amidships. The greatest dimension of the stringer is to be fitted against the frames.
- **5.2.7.3.3** Scarphs in the port and starboard stringers are to be staggered and suitably positioned in relation to joints in other members. The face of the scarph in the stringer is to be cut parallel to the frames.
- **5.2.7.3.4** Stringers are to be attached to each frame by one through fastening where the moulding of the stringer does not exceed 180 mm and by two through fastenings when the moulding exceeds 180 mm.
- **5.2.7.3.5** Where the framing is of Type 5, 6 or 7 (5.2.5.2.1), chocks are to be fitted between the intermediate bent frames and the stringer.
- **5.2.7.3.6** Lugs are to be fitted to steel frames to take the stringer fastenings.
- **5.2.7.3.7** As an alternative to the fitting of a bilge stringer two or more side stringers may be fitted. Where two side stringers are fitted the cross-sectional area of each is to be not less than 60 % of the Rule area for the bilge stringer.
- **5.2.7.3.8** For size of fastenings, see Table 7.

5.2.7.3.9 For bilge stringers, etc., in steel construction, the arrangements are to be as follows: -

- (a) Where the framing is Type 4 (steel frames) a bilge stringer is to be fitted where the depth from top of floor to deck at side amidships exceeds 2.4m unless a cabin deck is fitted.
- (b) A side keelson is to be fitted when the half-breadth at the top of the floor amidships exceeds 2.4 m.
- (c) The scantlings of the bilge stringer and side keelson are given in Table 7. These are to extend as far forward and aft as practicable.
- (d) Bilge stringers and side keelsons are to be welded to the frames or attached by frame lugs with not less than two rivets.

Length , L, m	Cross-se area of bea cm	ectional am-shelf, 1 ²	Cross-sec area of k stringer,	tional bilge cm ²	Diam	eter of bolts	s, mm,	Steel side keelson and bilge stringer angles, mm
	Sailing and auxiliary	Motor	Sailing and auxiliary	Motor	Arms of breast- hook	Beam shelf stringers	Hanging knees	
6	29	32	25	22	8	6	6	
8	40	40	32	29	8	6	6	
10	50	50	40	35	8	6	6	
12	70	60	50	50	10	8	8	
14	90	80	65	60	12	8	8	60 x60 x 4.0
16	110	100	80	70	12	8	8	60 x60 x 5.5
18	130	110	90	85	12	10	10	65 x65 x 6.5
20	150	130	105	100	14	12	12	75 x65 x 5.5
22	170	150	120	110	14	12	12	75 x 65 x 6.5
24	190	170	140	125	14	12	12	75 x 65 x 7.0

Table 7: Beam shelf and bilge stringer scantlings and fastenings for motor, sailing and auxiliary craft

NOTE

The Table scantlings for the beams shelf and bilge stringer are based on a timber having a standard density of 560 kg/m³ and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.

5.2.7.4 Breast hooks

- **5.2.7.4.1** The beam shelf and stringer ends are to be efficiently attached to the centreline construction. Breast hooks and transom quarter knees are to be fitted as necessary.
- **5.2.7.4.2** The ends of the craft are to be suitably strengthened, and particular attention is to be given to this where there is a large overhang.
- 5.2.7.4.3 For size of fastenings, see Table 7.

5.2.7.5 Bottom girders

- 5.2.7.5.1 The engine seating's are to be of substantial construction to suit the power of the machinery.
- **5.2.7.5.2** The longitudinal girders forming the engine seating's are to extend as far forward and aft as practicable and are to be adequately supported by transverse floors and/or brackets.
- **5.2.7.5.3** Additional side girders may be required in the machinery space and in the bottom of the craft forward.

5.2.8 Watertight Bulkheads

5.2.8.1 General

5.2.8.1.1 Every vessel shall be provided with watertight bulkheads as required by Regulation 36 of Merchant Shipping (Small ships, Local Cargo Ship Safety, Small Ship Safety, Surveys and Inspection for Vessels Engaged on Local and Coastal Voyages, Inland Waters).

Regulation 36:

Subdivision of passenger vessels and certain cargo-passenger vessels

- (1) On:
- (a) passenger vessels 20m and above in length; and
- (b) passenger vessels and cargo-passenger vessels less than 20m in length, that are certified to carry 50 passengers or more and to operate in open waters;
- **5.2.8.1.2** Watertight bulkheads may be constructed of timber or steel. Other materials shall be subject to special consideration by the overseeing authority.
- **5.2.8.1.3** Watertight bulkheads shall be pierced to the least possible extent, and where they are pierced proper steps shall be taken to maintain their watertight integrity.
- 5.2.8.2 Timber Bulkheads
- **5.2.8.2.1** Timber bulkheads shall be constructed to the scantlings shown in Table 8. Such bulkheads shall have vertical stiffeners fastened into the grounds and to the deck beams.
- **5.2.8.2.2** The timber grounds shall be bedded into non-setting mastic or other material approved for this purpose and be through fastened to the hull planking.
- **5.2.8.2.3** The planking on timber bulkheads may be fitted either into rabbets or on to the face of the bulkhead grounds. It may also be fastened to the face of deep or web frames where such frames are fitted and fastened to the hull planking and are not less in size than the scantlings for web frames.
- **5.2.8.2.4** Planked bulkheads shall be laid diagonally with two equal thicknesses having a material acceptable to the Authority between these layers.

	Pla	nking	Stiffener				
Height of bulkhead	Double planked	Ply- wood	Stiffener spacing	Moulding	Siding		
m	mm	mm	mm	mm	mm		
1.0	20	10	400	70	35		
1.5	30	15	400	85	45		

Table 8: Timber bulkheads

	Pla	inking		Stiffener	
Height of bulkhead	Double planked	Ply- wood	Stiffener spacing	Moulding	Siding
2.0	40	20	400	100	55
2.5	50	25	450	115	65
3.0	60	30	450	135	75
3.5	70	35	450	150	85
4.0	80	40	450	165	95

NOTES

- 1. The height of the bulkhead is to be measured from the top of the keel to the underside of the deck beam at the centre line of the vessel.
- 2. Where stiffener spacing differs from the basic stiffener spacing shown in the Table planking thickness shall be increased and may be decreased for every increase or decrease respectively in the resulting span between stiffeners as follows:
 - (i) Planking-3 mm per 30 mm difference
 - (ii) (ii) Plywood-3 mm per 50 mm difference.
- 3. If the stiffener spacing shown in the table is not used then the stiffener scantlings are to be adjusted by maintaining the section modulus of stiffener per millimetre of stiffener spacing
- 4. In the case of a collision bulkhead the table planking thickness is to be increased by 25 % and the section modulus of the stiffener is to be not less than 1.25 times the table modulus.
- 5. Where collision bulkhead stiffeners are glued and fastened to the bulkhead, the required increase, based on the section modulus will be specially considered.

5.2.8.3 Steel Bulkheads

5.2.8.3.1 The scantlings of steel watertight bulkheads are given in Table 9.

5.2.8.3.2 In collision bulkheads the spacing of stiffeners is to be not greater than 460 mm,

- **5.2.8.3.3** At the level of the decks below the upper deck, angles or flats are to be suitably attached to the bulkheads for taking the fastenings of the wood deck.
- **5.2.8.3.4** Steel bulkheads are to be attached to wood frames of the size required for grown frames or to a boundary angle of the size required for steel frames.

Table 3. Duiki leau platifiu and stiffet ets for motor, sailing and auxiliary cra	Table 9: Bulkhead pl	ating and stiffeners	for motor, sailing	and auxiliar	<pre>/ craft</pre>
---	----------------------	----------------------	--------------------	--------------	--------------------

Bulkhead p	lating and spacir	ng of stiffeners	S	tiffeners	with free	ends			
Depth of	Thickness of	Spacing of	Overall length of	Heigh	Height of upper deck above top of				
bulkhead at	plating, mm	stiffener, mm	stiffener, m		sti	ffener, m			
middle line				0	0.6	1.2	1.8	2.4	
					Мос	dulus, cm	1 ³		
1.5	2.5	300	1.5	2.5	4.6	6.6	8.7	11.0	
1.8	3.0	325	1.8	4.8	8.0	11.0	14.0	17.0	
2.1	3.5	350	2.1	8.0	13.0	17.0	22.0	27.0	
2.4	4.0	375	2.4	13.0	20.0	26.0	33.0	39.0	
2.7	4.5	400	2.7	20.0	29,0	37.0	46.0	55.0	
3.0	5.0	425	3.0	29.0	40.0	52.0	63.0	75.0	
3.3	5.0	450	3.3	40.0	55.0	70.0	85.0	-	
3.6	5.5	475	3.6	56.0	75.0	93.0	-	-	
3.9	5.5	500	3.9	75.0	98.0	120.0	-	-	
4.2	6.0	525	4.2	98.0	125,0	-	-	-	
4.5	6.0	550	4.5	125.0	160.0	-			
4.8	6.5	575	4.8	160.0	-	-	-	-	

NOTES

1. When the spacing of stiffeners differs from that given in the table, the thickness of the plating is to be modified at the rate of 0.5 mm for each 100 mm difference in spacing. The modulus of the stiffeners is to be modified in direct proportion to the stiffener spacing.

2. The moduli given in the Table are for unbracketed stiffening sections in association with plating.

3. Where stiffening sections are bracketed at the top and bottom the Table modulus, corrected in accordance with Note 1, is to be multiplied by the factor, F_t determined from the following formula:-
$$F_t = 0.8 - \frac{h}{3.75(h+l)}$$

where

h = height of upper deck above top of stiffener in metres.

I =length of stiffener, in metres.

5.2.9 Hull planking

5.2.9.1 General

5.2.9.1.1 The outside planking may be single skin (carvel or clinker), strip, double skin, single skin plywood or cold moulded laminations.

5.2.9.1.2 The thickness for single skin carvel or strip construction is to be as given in Table 10.

Table 10: Outside and deck pl	planking for mo	otor,sailing and	auxiliary craf
-------------------------------	-----------------	------------------	----------------

Length, <i>L</i> , m	Basic thickness, mm
6	19
8	21.5
10	24
12	28
14	32
16	36
18	39
20	41.5
22	43.5
24	45.5

NOTES

1. The Table thicknesses of outside and deck planking are based on a timber having a standard density of 560 kg/m³ and 430 kg/m³ respectively, and where timber of a different density is to be used the thickness is to be modified in accordance with 5.1.4.

2. For frame and beam spacing corrections, see 5.2.9.1.3 and 5.2.11.1.3. respectively.

3. The basic thicknesses are applicable to single skin carvel or strip outside planking and to a laid deck. For corrections for other types of construction, see 5.2. 9.1.4 for outside planking and 5.2.11.1.5, 5.2.11.1.6 and 5.2.11.1.7 for deck planking.

5.2.9.1.3 Where the frame spacing differs from that given in Table 5 the thickness of planking determined from Table 9 is to be modified as follows:-

Type 1:

bent frames Other frame type 1.5 mm per 25 mm difference

Other frame types

1.5 mm per 38 mm difference

5.2.9.1.4 The thickness determined from Table 9, after correction for frame spacing and, except for plywood, density of timber, may be reduced for the type of planking as follows:-

Clinker	10 percent
Diagonal double skin	10 percent
Cold moulded laminate	The reduction will depend on the framing or stiffening system
Single skin plywood	adopted and will be a maximum of 25 %

5.2.9.2 Single skin

- **5.2.9.2.1** Butts of the outside planking are to be spaced not less than 1.2 m apart and no butts are to be in the same frame space unless there are three strakes between, see *Figure 12*. The arrangement of butts at the ends of the craft is to be to the Surveyor's satisfaction.
- **5.2.9.2.2** The butts in the garboard strake are to be kept clear of the keel scarph. Butts in the sheer strake are to be clear of butts in the covering board.

5.2.9.2.3 Butts in the planking are to be strapped or scarphed.

- Figure 12: Spacing of butts
- **5.2.9.2.4** Wood or metal butt straps are to be arranged between the frames but a drainage space is to be left between the strap and the frame. The breadth is to be sufficient to overlap the adjacent planks by about 12 mm.
- **5.2.9.2.5** Wood butt straps are to have the same thickness as the planking. Metal straps are to be not less than 1/6 of the planking thickness, *see Figure 13*.

Figure 13: Typical butt straps on single skin hull planking

5.2.9.2.6 The planking and the straps are to be through fastened. The size of the fastenings is to be as required by Table 10 for planking to frames, and the number is to be as follows:-

Width of planking, mm	Number of fastenings in each plank end
Under 100	3
100 and under 200	4
200 and under 250	5

- **5.2.9.2.7** The length of a scarph is to be not less than four times the thickness of the planking. The scarph is to be positioned on the frame, and glued and fastened to it.
- **5.2.9.2.8** In sailing and auxiliary craft, the garboard and adjacent strakes are to be of increased width at the after end to give a reasonable plank fun, and the garboard strake is to be in as long a length as possible.
- **5.2.9.2.9** Where, with planks of normal breadth, the length of snapped ends exceeds 250 mm, the planks are to be checked into the centreline structure (see *Figure 14*). The sizes of the fastenings are to be as for the garboard strake (see 5.2.9.2.11).

Figure 14: Connection of single skin planking to centreline structure (for normal breadth of planking)

- **5.2.9.2.10** When strip planking is adopted, the top and bottom edges are to be rounded and hollowed respectively. Each plank is to be glued and edge fastened to the one below with non-ferrous fastenings, see Figure 15 Suitable stealer planks may be fitted to suit planking arrangements.
- **5.2.9.2.11** The garboard strakes are to be screw fastened to the keel or hog. The screws are to be of the size required by Table 10 for outside planking to Type 2 grown frames. They are to be reeled, and are to be spaced not more than twelve diameters apart in each row and are to enter the keel or hog to a depth at least equal to the thickness of the garboard. In way of deadwoods a combination of dumps and screws may be used.
- **5.2.9.2.12** The size and number of fastenings attaching the outside planking to the frames are to be as given in Table 10. The types of fastenings are dependent on the framing as follows:-

Type 1:	Bent frames	All through fastenings
Type 2:	Grown frames	Through fastenings to be arranged
Туре 3:	Laminated frames	in way of beam shelf, bilge (or side) stringer, and tuck (in a sailing or auxiliary craft). The remainder may be screws
Type 4:	Steel frames	Nut and screw bolts
Types 5, 6 and 7:	Grown, laminated or steel frames with bent frames between	Bent, as for Type 1 Grown and laminated, as for Types 2 and 3 Steel, as for Type 4

5.2.9.2.13 Where frames are increased in way of the mast (see 5.2.5.3.6), they are to be through fastened

throughout.

- 5.2.9.3 Double skin
- 5.2.9.3.1 Double skin planking may be arranged as follows: -
 - (a) Both diagonal,
 - (b) Inner diagonal, outer fore and aft,
 - (c) Both fore and aft.
- **5.2.9.3.2** The outer skin is to be approximately 3/5 of the total thickness, and the diagonal planking is to be at approximately 45°.
- **5.2.9.3.3** The inner skin is to be either screw or nail fastened to the frames, and the outer skin is to be through fastened to the frames. In arrangements 5.2.9.3.1 (a) and (b) through fastenings are to be fitted at the plank crossings, and in 5.2.9.3.1 (c) the inner skin is to be screw fastened to the outer between frames, see *Figure 15*.

Arrangement of fastening

Section of planking

Figure 15: Strip planking

Planking		,		S	ize of fa	stening	, as	0		,	Number of fastenings per plank						
thickness,			Out	side pla	nking			De	eck plank	ing		Width of plank					
mm	Grow Bolt, mm	n, lam W sc dia	inated or /ood rews meter	steel fra Coop nails	er bolt s*size	Bent f Cooj nai	rames per bolt Is size	W sc dia	/ood rews meter	Bolt, mm	Under 100 mm	100 mm and under 150mm	150 mm and under 180mm	180 mm and under 205mm	205mm and under 225mm		
		mm	gauge	mm	gauge	mm	gauge	mm	gauge								
19	6	5	10	4.5	7	2.5	12	4.5	8	5	2	2	3	3	3		
20.5	6	5	10	5	6	3	11	5	10	5	2	2	3	3	3		
22	6	5	10	6,5	3	3.5	10	5	10	6	2	2	3	3	3		
23.5	6	5	10	6.5	3	3.5	10	5	10	6	2	2	3	3	3		
25	6	5.5	12	6.5	3	3.5	9	5	10	6	1	2	2	3	3		
26.5	6	5.5	12	6.5	3	3.5	9	5.5	12	6	1	2	2	3	3		
28	6	5.5	12	6.5	3	4.5	7	5.5	12	6	1	2	2	3	3		
29.5	6	5.5	12	6.5	3	4.5	7	5.5	12	6	1	2	2	3	3		
31	8	6.5	14	7.5	1	5	6	5.5	12	6	1	2	2	3	3		
32.5	8	6.5	14	7.5	1	5	6	6.5	14	8	1	2	2	3	3		
34	8	6.5	14	7.5	1	5.5	5	6.5	14	8	1	2	2	3	3		
36.5	8	7	16	7.5	1	5.5	5	6.5	14	8	1	2	2	3	3		
37	8	7	16	7.5	1	5.5	5	6.5	14	8	1	2	2	2	3		
38.5	8	7	16	9.5	3/0	5.5	5	7	16	8	1	2	2	2	3		
40	10	8	18	9.5	3/0	6	4	7	16	8	1	2	2	2	3		
41.5	10	8	18	9.5	3/0	6	4	7	16	8	1	2	2	2	3		
43	10	8	18	9.5	3/0	-	-	8	18	10	1	2	2	2	3		
44.5	10	8	18	9.5	3/0	-	-	8	18	10	1	2	2	2	3		
46	12	8.5	20	11	5/0	-	-	8	18	10	1	2	2	2	3		
47.5	12	8.5	20	11	5/0	-	-	8	18	10	1	2	2	2	3		
49	12	8.5	20	11	5/0		-	8	18	10	1	2	2	2	3		
50.5	12	10	24	12.5	7/0	-	-	8.5	20	12	1	2	2	2	3		
52	12	10	24	12.5	7/0	-	-	8.5	20	12	1	2	2	2	3		

	Table	11:	Fastenings	for outsi	de enc	deck	planking	in motor.	. sailing e	end auxiliar	v craft
--	-------	-----	------------	-----------	--------	------	----------	-----------	-------------	--------------	---------

*•For grown or laminated frames only.

NOTES

The diameter of the wood screws given in the Table is the nominal diameter of the unthreaded shank.
The gauge of wood screws given in the Table is British Standard Gauge, and that of copper boat nails is Imperial Standard Wire Gauge.

- **5.2.9.3.4** In arrangements 5.2.9.3.1 (a) and (b) oiled calico dipped in linseed oil or an equivalent membrane is to be laid between the skins, and in 5.2.9.3.1 (c) it is recommended that resorcinol glue be used between the skins.
- **5.2.9.3.5** The arrangement at the gunwale is to be such as to ensure that the covering board can be made watertight.

Typical methods are shown in Figure 16.

Inner skin diagonal, outer skin fore and aft

Figure 17: Detail of gunwale for double skin planking

5.2.9.4 Plywood planking

- 5.2.9.4.1 Plywood is to be fitted in as large panels as practicable having due regard to the form of the craft. Panel butts are to be staggered between the bottom, side and deck and arranged clear of the mast, ballast keel and engine seating.
- 5.2.9.4.2 The width of longitudinal seam landings on the centreline structure, chine and gunwale members and on any longitudinal stringers is to be not less than that required by Table 11. Seams are to be glued and fastened with one or two rows of fastenings (see Table 11), and arranged to give maximum spacing of fastenings of 50 mm.
- 5.2.9.4.3 Butts and seams are to be scarphed or strapped where necessary. The length of a scarph is to be not less than 8 times the hull thickness. The scarph is to be glued and, if made in situ, fitted with a backing strap of a width not less than 10 times the hull thickness. The strap is to be glued and fastened to the hull with two rows of fastenings of the size given in Table 12 and spaced about 8 times the hull thickness.
- **5.2.9.4.4** Butt straps are to be of the width given in Table 13 and the same thickness as the hull planking. The strap is to be glued and double or treble fastened to the hull planking. The size of fastenings is to be as given in Table 13
- 5.2.9.4.5 The hull planking is to be attached to the frames by fastenings of the size given in Table 11, spaced generally not more than 75 mm apart.
- 5.2.9.5 Hull sheathing

- **5.2.9.5.1** Whilst it is not a requirement of the Rules that the outside planking be sheathed, if this is done it must be efficiently carried out to the Surveyor's satisfaction.
- **5.2.9.5.2** Copper sheathing should be bedded on bitumastic treated paper or felt. The sheets are to be dressed to ensure that the sheathing is in close contact with the bedding. They are to overlap each other by about 22 mm; the vertical laps are to face aft and the horizontal laps are to face upwards. Fastening is to be by coppering nails spaced at not more than 40 mm at the sheet edges. In addition, the panel is to be tack fastened at spacings of not more than 75 mm vertically and 150 mm horizontally. The sheathing is to be stopped short of the rabbet line and a wrapper piece fitted.
- **5.2.9.5.3** Where synthetic sheathing is used, care is to be taken to ensure that the moisture content of the timber is as low as is practicable. All seams and fastening holes to be splined or dowelled or stopped with a compound which is compatible with the manufacturer's recommendations. Wherever possible, the sheathing is to be fitted around the wood keel and deadwood before the ballast keel is fitted.

Table 12: Plywood planking: overlaps and fastenings for motor, sailing and auxiliary craft

	Mi	nimum bread	dth o	of landing be	etween	Fastenings				
Plywood	Hull pla	inking and		Hull or de	eck planking	Wood	Cooper boat			
planking	keel or	chine, mm		and	shelf or		nails, gauge			
thickness,				longitudinal, mm		Gauge Diameter				
mm							mm			
6	25	q			25	8	4.2	10		
8	28	gle		ed	28	10	4.9	10		
10	32	ste		ngl	32	10	4.9	8		
		ta:		Sil						
13	44				35	12	5.6	8		
16	50	a B		70	44	12	5.6	6		
19	57	ldu		ole Jec	50	14	6.3	6		
22	63	Doi aste		out	57	14	6.3	3		
25	63	1 - 2		Tas D	57	16	7.0	3		

NOTES

1. The gauge of wood screws given in the Table is British Standard Gauge. and that of copper boat nails is Imperial Standard Wire Gauge.

2. The diameter of the wood screw is the nominal diameter of the unthreaded shank.

Table 13: Plywood planking: butts and butt straps for motor, sailing and auxiliary craft

Plywood planking	Bre	ath of butt	Wood scre	ews	Cooper boat nails, gauge
thickness,	strap, mm		Gauge	Dia, mm	
mm			-		
6	150 Double		8	4.2	10
		fastened			
8	175		10	4.9	10
10	200		10	4.9	8
13	250		12	5.6	8
16	280		12	5.6	6
19	330	Triple	14	6.3	6
22	355	fastened	14	6.3	3
25	380		16	7.0	3

NOTES

1. The gauge of wood screws given in the Table is British Standard Gauge. and that of copper boat nails is Imperial Standard Wire Gauge.

2. The diameter of the wood screw is the nominal diameter of the unthreaded shank.

5.2.10 Beams

- **5.2.10.1** Scantlings-Timber
- **5.2.10.1.1** The scantlings of ordinary beams, half beams and strong beams are to be not less than those given in Table 14.

5.2.10.1.2 Where the actual beam spacing differs from that given in Table 14, the strength of ordinary and half beams is to be modified in direct proportion, i.e.

Actual (sm^2) = Table $(sm^2) \times \frac{actual spacing}{table spacing}$

where *s* and *m* are the siding and moulding, respectively; the Table siding is to be that after correction for density. *see 5.1.4.*

- **5.2.10.1.3** Where laminated beams are fitted their siding may be reduced by 15%.
- **5.2.10.1.4** Strong beams are to be fitted at ends of openings when two or more beams are cut. They may also be required to be fitted in way of the mast.
- 5.2.10.2 End attachments
- 5.2.10.2.1 All beams are to be fastened to the shelf by dovetails or dowels, see Figure. 18.
- **5.2.10.2.2** As an alternative to 5.2.10.2.1, where a plywood deck is fitted the beams need not be dovetailed or dowelled but may be carried past the shelf and checked over it. The depth of the check is to be about one-quarter of the depth of the beam and the beam is to be screw or dump fastened to the shelf.
- **5.2.10.2.3** Hanging knees are to be fitted as required by Table 14 and are to be arranged at the mast and other strong beams to give a suitable disposition over the length of the craft.
- 5.2.10.2.4 Hanging knees may be steel straps, flanged plates, angle bar, or grown or laminated timber.
- **5.2.10.2.5** The dimensions of strap-hanging knees are given in Table 14 but at the ends of the craft the length of arms need not exceed one-third of the length of the frame or beam. Angle knees are to have equivalent strength.
- **5.2.10.2.6** The minimum moulding at the throat of grown or laminated knees is to be 60% or 40%, respectively, greater than that required by Table 5 for ordinary grown frames at the heel.
- **5.2.10.2.7** Each arm is to be connected to the beam and to the frame by four bolts of the diameter given in Table 7. The bolts need not pass through the deck or outside planking.
- **5.2.10.2.8** Bulkheads of substantial construction glued and screwed to the beams and frames will be accepted in lieu of hanging knees.
- **5.2.10.2.9** Lodging knees are to be fitted to the beams in way masts and at ends of deck openings unless a plywood deck is fitted.

Figure 18: Dowel fastening of beam at shelf

5.2.10.3 Local reinforcements

- **5.2.10.3.1** The beams and deck are to be suitably strengthened in way of masts, coachroof ends, windlass, cleats, sheet winches etc. Where a mast is stepped on the deck the structural arrangements will be specially considered.
- **5.2.10.3.2** All deck openings are to be properly framed with carlings fitted to receive the half beams.

5.2.10.4 Cabin deck

- **5.2.10.4.1** Where the depth amidships from top of wood keel to top of beam at side amidships is 3 m or greater, cabin deck beams are to be fitted. The strength of these beams is to be at least 60 % of that required for upper deck beams, and the beams are to be efficiently attached to the craft's side.
- 5.2.10.5 Steel construction
- **5.2.10.5.1** Where steel beams are fitted, steel deck stringer plates and tie plates of dimensions given in Table 14 are to be arranged.
- **5.2.10.5.2** The scantlings of steel beams are given in Table 15. Where the spacing differs from that given in the Table the section modulus is to be modified in direct proportion. The Table scantlings apply over the midship $\frac{3}{5}L$. Outside this, the thickness may be reduced by 10 %. Half beams are to be of the size required by the Table for the same length with one row of pillars and are to be attached to the carlings or coaming plates.
- **5.2.10.5.3** Cabin deck beams are to be fitted where the depth amidships from top of floor to top of beam at side is 3.2 m or greater. Beam knees are to be fitted on alternates and the remaining beams are to be fastened by lugs to the frames.
- **5.2.10.5.4** Beam knees are to have arms not less than $2\frac{1}{2}$ times the depth of the beam, a distance across the throat of not less than 60 % of the length of the arms and a thickness as given in Table 15
- 5.2.10.5.5 Strong beams are to be fitted in accordance with 5.2.10.1.4.

- **5.2.10.5.6** Where masts are wedged to the deck the arrangements in way of the mast are to include the following:-
 - (a) Mast deck plates of a length and breadth of not less than three times the diameter of the mast hole, and a thickness equal to that of the stringer plate required by Table 15
 - (b) Two diagonal tie plates, of the size given in Table 15 for tie plates, are to be fitted on the beams each side of the craft.
 - (c) A collar is to be fitted around the opening to take the wedges.

Length	Spacing	Ord	inary beams	s 3/5L ami	dship	Orc	Ordinary beams beyond 3/5L				Beams in way of masts and at ends			Strap hanging knees to deck beams				
of	of					amic	lship, half b	eam thro	oughout		of deck	openings						
beam,	ordinary	At r	niddle	At	ends	At r	niddle	At	ends	At m	niddle	At	ends		Length of	ⁱ arm, mm	At	At point,
m	beams	Siding,	Mouldin	Siding	Mouldin	Sidin	Mouldin	Sidin	Mouldin	Sidin	Mouldi	Siding,	Mouldin	Number	For 3/5L	Beyond	throat,	mm
	centre to	mm	g, mm	, mm	g, mm	g,	g, mm	g,	g, mm	g,	ng,	mm	g, mm	on each	amidshi	3/5L	mm	
	centre,					mm		mm		mm	mm			side	р	amidshi		
	mm															р		
1.8	250	30	45	30	30	26	33	26	26	39	55	39	39	3	300	240	22 x 8	19 x 4
2.1	275	36	53	36	36	32	40	32	32	46	65	46	46	4	325	260	22 x10	22x 4
2.4	300	41	60	41	41	36	45	36	36	52	74	52	52	4	350	280	25 x	22x 6
																	12	
2.7	325	46	66	46	46	40	50	40	40	58	83	58	58	5	375	300	30 x16	25 x 6
3.0	350	51	72	51	51	43	54	43	43	63	90	63	63	5	400	320	34 x19	30x 6
3.3	375	55	78	55	55	46	58	46	46	68	97	68	68	6	425	340	38 x19	35 x 6
3.6	400	59	83	59	59	50	63	50	50	73	104	73	73	6	450	360	42 x22	40 x 8
3.9	425	62	88	62	62	53	66	53	53	77	110	77	77	7	475	380	46 x22	40 x 8
4.2	450	66	94	66	66	56	70	56	56	82	117	82	82	7	500	400	50x25	45 x 8
4.5	475	69	99	69	69	58	74	58	58	86	124	86	86	8	525	420	52x25	45 x 8
4.8	500	72	103	72	72	61	78	61	61	90	129	90	90	8	550	440	55 x27	50 x 10
5.1	525	75	108	75	75	63	82	63	63	94	135	94	94	9	575	460	58 x27	50 x 11
5.4	550	79	112	79	79	65	86	65	65	98	140	98	98	9	600	480	61 x30	50 x 11
5.7	575	82	117	82	82	67	91	67	67	102	146	102	102	10	625	500	64 x30	52 x12
6.0	600	85	121	85	85	69	96	69	69	107	151	107	107	10	650	520	67 x30	52 x12
6.3	625	88	125	88	88	70	100	70	70	112	156	112	112	11	675	540	70x33	54x14
6.6	650	91	130	91	91	71	105	71	71	119	163	119	119	11	700	560	72 x33	54 x14
6.9	675	96	137	96	96	73	112	73	73	127	172	127	127	12	725	580	74 x33	57 x16
7.2	700	102	145	102	102	75	120	75	75	135	180	135	135	12	750	600	78 x36	57 x16

Table 14: Beams and hanging knees for motor, sailing and auxiliary craft

NOTES

1. The length of a wood beam is to be measured amidships to the inside of the beam shelf.

2

2. The Table scantlings of timber beams are based on a timber having a standard density of 560 kg/m³ and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.

3. Where the beam spacing differs from that given in the Table, sm^2 is to be modified in direct proportion, see 5.2.10.1.2.

4. The siding of a laminated beam may be reduced by 15%.

Length, m	Upper deck	Upper deck	Upper deck	Upper deck	cabin deck	cabin deck
	and stringer plate 3/5L amidship, mm	stringer plate at ends and cabin deck stringer	mm	angle, mm	mm	angle, mm
	•	plate, mm				
10	220 x3.5	170 x3.5	100 x 3.5	45 x 45 x 3.5	-	-
12	250 x3.5	200 x3.5	100 x 3.5	45 x.45 x.4		-
14	290 x3.5	230 x3.5	115 x 3.5	50 x.50.x.4	-	-
16	335 x4	240 x4	120 x 4	50 x.50.x 4.5	75 x.4	50 x 50 x4
18	375 x4.5	250 x4	130 x 4.5	50 x 50 x 5	85 x.4	50 x 50 x 4
20	410 x4.5	280 x4	140 x 4.5	50 x 50 x 5	90 x.4	55 x 55 x.4
22	455 x5	300 x4.5	150 x 5	55 x 55 x 5.5	100 x 4.5	60 x 60 x.4
24	500 x5.5	325 x4.5	150 x 5.5	60 x 60 x 5	110 x 4.5	60 x 60 x 4.5

Table 15:Longitudinal steel items for motor, sailing and auxiliary craft

Table 16: Steel angle beams at upper and cabin decks for motor, sailing and auxiliary craft

Length	Spacing	Upp	er deck be	eams, mm		Upp	ber deck	beams, mm	
of	of	Without pillars	Thickn	With one row	Thic	Without pillars	Thick	With one	Thick
beam,	beams,		ess of	of pillars	knes		ness	row of pillars	ness
m	mm		knee		s of		of		of
					knee		knee		knee
2.4	305	65 x 50 x 5	4	-	-	65 x 50 x 3.5	3.5	-	-
2.7	330	65 x 50 x6	4	-		65 x 50 x 4	4	-	-
3.0	355	70 x 55 x6	4.5	-	-	65 x 50 x 4.5	4	-	-
3.3	380	75 x 65 x 6.5	4.5		-	65 x 65 x 5.5	4.5	-	-
3.6	405	85 x 65 x6.5	5	50 x 50 x 5	4	65 x 65x 7	4.5	40 x40 x 4.5	3.5
3.9	430	90 x 65 x7	5	65 x 50 x4	4.5	75 x 65x 6	5	50 x40 x 3.5	4
4.2	455	100 x 65 x6.5	5,5	65 x 50 x 4.5	4.5	75 x 65 x6.5	5	50 x50 x.4	4
4.5	470	100 x 65 x7	6	65 x 50 x 5	5	75 x 65 x7.5	5.5	50 x50 x 4.5	4.5
4.8	482	110 x 65 x7.5	6	65 x 60 x 5.5	5	85 x 65 x7	5.5	65 x50 x 4	4.5
5.1	495	125 x 65 x 7.5	6.5	65 x 65 x 6	5.5	100 x 65 x5	6	65 x50 x 4.5	5
5.4	508	135 x 65 x 7.5	6.5	75 x 65 x 5.5	5,5	100 x 65 x7	6	65 x50 x 5	5
5.7	520	145 x 65 x 7.5	7	75 x 65 x6	6	110 x 65 x7.5	6,5	65 x50 x 5.5	5.5
6.0	532	140 x 75x10	7	85 x 65 x 5	6	120 x 70 x 7.5	6.5	70 x60 x 5.5	5.5
6.3	545	140 x 75 x12	7.5	90 x 75 x6.5	6.5	135 x75 x7.5	7	75 x65 x 6	6
6.6	558	150 x 75x12	7.5	95 x 75 x7,5	6.5	140 x 75x 8	7	75 x65 x 6.5	6
6.9	570	165 x 75 x12	8	100 x 75 x 8	7	145 x75 x 8.5	7.5	85 x 65 x6.5	6.5
7.2	585	175 x 75 x12	8	100 x75 x 9	7	160 x 75 x 8.5	7.5	95 x65 x 6.5	6.5

NOTES

1. The length of a steel angle beam is to be measured to the toe of the frame amidships.

2. Where the beam spacing differs from that given in the Table. The section modulus (without plating) is to be modified in direct proportion.

5.2.11 Deck planking

5.2.11.1 General

5.2.11.1.1 Decks may consist of:-

- (a) Laid planks,
- (b) Plywood,
- (c) Plywood sheathed with a laid deck.
- 5.2.11.1.2 The thickness of laid deck is to be as given in Table 10
- **5.2.11.1.3** Where the beam spacing differs from that given in Table 14, the Table thickness is to be modified at the rate of 1.5 mm per 50 mm difference.
- 5.2.11.1.4 Where teak or other approved timber having a density exceeding 720 kg/m³ is used the thickness

may be reduced by 12 %.

- **5.2.11.1.5** Where plywood is used the thickness may be reduced by 30%.
- **5.2.11.1.6** Where plywood is sheathed with a laid deck the combined thickness may be 30% less than the thickness in Table 10 provided that:-
 - (a) the combined density of the plywood and sheathing is not less than 430 kg/m³,
 - (b) the thickness of the plywood is not less than 30 percent of the combined thickness and in no case is less than 6 mm, and
- **5.2.11.1.7** where the laid planking is less than 19 mm, the seams are filled with an approved flexible seam compound,
- **5.2.11.1.8** Where the deck is covered with canvas, nylon, glass reinforced plastics or other approved sheathing, the thickness may be reduced by 1.5 mm.
- **5.2.11.1.9** All exposed canvas seams are to be sewn and not overlapped and tacked. Securing of canvas by tacks should be used only where the edges are protected by listings, etc. The canvas is to be suitably bedded to the deck.
- 5.2.11.2 Laid decks
- **5.2.11.2.1** Butts of the deck planking are to be spaced not less than 1.2 m apart and no butts are to be in the same transverse plane unless there are three strakes between. *see Figure 12*.
- 5.2.11.2.2 The material for laid decks is to be quarter sawn.
- **5.2.11.2.3** Butts are to be arranged on a beam and are to be of the scarph or caulked lip type unless the siding of the beam is sufficient to allow a caulked square butt to be used. *see Figure 19.*
- **5.2.11.2.4** Deck planks are to be attached to the beams by either screw fastenings from above, or side fastening by nails, see *Figure 20*.
- **5.2.11.2.5** Where the beam spacing has been increased it may be necessary to fit horizontal dowels in the planking between the beams.
- **5.2.11.2.6** The number and size of screws are to be as given in Table 11. Deck covering boards are to be screw fastened to the sheer strake and beams. The screws to the sheer strake are generally to be spaced not more than 12 diameters apart.
- **5.2.11.2.7** Where steel beams are fitted, the fastenings are to be either nut and screw bolts or round head wood screws fitted from the underside of the beams. The number and size of bolts or screws are to be as given in Table 11.
- 5.2.11.3 Plywood decks
- **5.2.11.3.1** Plywood decks are to be fitted in panels as large as practicable.
- **5.2.11.3.2** Butts are to be clear of those in the side planking and are not to be placed in the vicinity of the mast. They are to be on a strong beam or are to be strapped.
- **5.2.11.3.3** Seams are to be strapped or scarphed or may be arranged on a longitudinal member having a width sufficient to give a landing of not less than that required by Table 12. Butts and seams are to be sealed watertight.
- **5.2.11.3.4** Plywood decks are to be glued or bedded to the beams and at the deck edges. They are also to be fastened to the beams and at the edges by screws or barbed nails, as required by Table 12. The fastenings in beams and butts landing on structural members are to be as required for deck edges. If a strap is fitted, it is to be as required by 5.2.9.4.4 for hull plywood planking.
- **5.2.11.3.5** Where plywood decks are laid on steel beams, liners are to be fitted where stringer and tie plates are used. Liners are to be the same width as the beam and the same thickness as the plates.
- 5.2.11.4 Plywood sheathed with laid deck
- **5.2.11.4.1** Plywood decks sheathed with a laid deck are to comply with the requirements of 5.2.11.3.1 to 5.2.11.3.3.
- **5.2.11.4.2** Where thickness of the laid sheathing on plywood decks exceeds 50% of the total thickness, the requirements of 5.2.11.2.1 and 5.2.11.2.2 are to be complied with. The sheathing is to be fastened through the plywood to the beams as for a laid deck, see 5.2.11.2.4 to 5.2.11.2.6.
- 5.2.11.4.3 Where the laid sheathing is less than 50 % of the total thickness the butts are to be suitably

positioned, and the fastenings may pass through the plywood only and are to be in accordance with 5.2.11.3.4.

Screw fastening

Figure 20: Deck fastening (laid decks)

- 5.2.11.5 Watertightness
- **5.2.11.5.1** Laid decks are to be caulked and payed or an acceptable deck seaming compound, applied in accordance with the manufacturers' recommendations, may be used. Wood dowels are to be glued.
- 5.2.11.5.2 All weather decks are to be hose tested on completion.
- 5.2.11.6 Deck fittings
- **5.2.11.6.1** Fittings fixed to the deck are to be bedded on a suitable mastic compound to maintain the watertightness of the deck.
- **5.2.11.6.2** It is recommended that in way of heavy fittings such as windlasses, winches, fairleads, etc., the deck planking and the fastening holes be coated with a suitable wood preservative prior to the application of the mastic.
- **5.2.11.6.3** Guard rail stanchions are to be bedded on a suitable mastic compound and are to have not less than three fastenings through the palm, one of which is to be a through fastening.
- 5.2.12 Pillars or Stanchions

5.2.12.1 Pillar Load

The load on a pillar is to be obtained from the following equation:

w = 0.715 bhs tonnes

where:

w = load in tonnes

- b = mean breadth in metres of area supported
- s = spacing of pillars in metres

h = height in metres above the deck supported, as defined below:

- (a) *h* for a pillar below an exposed deck on which cargo is carried is the distance from the deck supported, to a point 3.65 metres above the exposed deck. Where it is intended to carry deck cargoes in excess of 2640 kg /m² this head is to be increased in proportion to the added loads which will be imposed on the structure.
- (b) Where tween deck cargo is carried and its mass is greater or less than 2640 kg /m²,*h* is also to be suitably adjusted.
- (c) h for a pillar below the freeboard deck is to be measured to a point not less than 0.02L + 0.75 metres above the freeboard deck.
- (d) *h* for a pillar below the superstructure deck is to be measured to a point not less than 0.02L + 0.50 metres above the superstructure deck.

5.2.12.2 Permissible Load

(a) The permissible load pillar can carry is to be equal to or greater than the pillar load was determined above (5.2.12.1). The permissible load may be obtained from the equation:

$$wa = \frac{A}{1000} \left(l - 17 \left(\frac{l}{a} \right) \right) tonnes$$

where:

wa = Permissible load on the pillar in tonnes

A = Area of the pillar in square millimetres

I = The unsupported length of the pillar in metres

a = The diameter of a circular pillar or the shorter side of a rectangular pillar in millimetres.

Table 17 gives pillar loadings for a representative selection of round and rectangular pillars.

Table 17: Permissible load on timber pillars

Permissible load on timber pillars								
a (mm)	Unsupported length of pillar (m)							
		Rectangu	lar section			Round	section	
	1	2	3	4	1	2	3	4
50	1.7	0.8			1.3	0.6		
60	2.6	1.6	0.5		2.0	1.2	0.4	
70	3.7	2.5	1.3		2.9	2.0	1.0	
80	5.0	3.7	2.3	1.0	4.0	2.9	1.8	0.8
90	6.6	5.0	3.5	2.0	5.2	4.0	2.8	1.6
100	8.3	6.6	4.9	3.2	6.5	5.2	3.8	2.5
110	10.2	8.4	6.5	4.6	8.0	6.6	5.1	3.6
120	12.4	10.3	8.3	6.2	9.7	8.1	6.5	4.9
130	14.7	12.5	10.3	8.1	11.5	9.8	8.1	6.3
140	17.2	14.8	12.5	10.1	13.5	11.7	9.8	7.9
150	20.0	17.4	14.9	12.3	15.7	13.7	11.7	9.7
160	22.9	20.2	17.4	14.7	18.0	15.8	13.7	11.6
170	26.0	23.1	20.2	17.3	20.4	18.2	15.9	13.6
180	29.3	26.3	23.2	20.2	23.0	20.6	18.2	15.8
190	32.9	29.6	26.4	23.2	25.8	23.3	20.7	18.2
200	36.6	33.2	29.8	26.4	28.7	26.1	23.4	20.7

NOTE:

In the above table (a) is the shorter side of a rectangular pillar or the diameter of a circular pillar in millimeters.

5.2.12.3 The scantlings of pillars and stanchions of a material other than timber shall be determined

from the appropriate calculations.

- **5.2.12.4** Pillars or stanchions may be placed directly under beams, deck opening corners or deck longitudinals, The spacing of pillars fitted under longitudinals between bulkheads shall not exceed 5 times the beam spacing = 500 mm in the fore and aft direction nor shall they be placed more than 25 % of the beam from the vessel's centreline.
- **5.2.12.5** Supports under pillars or stanchions are to be of sufficient strength to distribute the loads effectively.
- 5.2.13 Engine Seating

The engine seating is to be of dimensions commensurate with the power of the machinery fitted thereto. They should

- (i) be of a length not less than twice the distance between the extreme holding down bolts;
- (ii) distribute the load over as many transverses as possible;
- (iii) terminate on a substantial transverse member; and
- (iv) be checked over and securely fastened through all transverse floors and the hull planking.

5.2.14 Coachroofs and deckhouses

5.2.14.1 General

Coachroofs and deckhouses are to be substantially constructed and efficiently connected to the carlings and beams.

5.2.14.2 Coachroofs

5.2.14.2.1 The scantlings of a coachroof are to be as given in Tables 18 and 19.

Length, L, m	Coaming thickness, mm	Coach roof deck thickness, mm
6	17	13
8	19	15
10	22	17
12	24	19
14	26	22
16	29	24
18	32	26

Table 18: Coachroof coaming and deck thicknesses for motor, sailing and auxiliary craft

NOTES

- 1. The Table thickness of coachroof coamings and deck are based on a timber having a standard density of 560 kg/m3 and 430 kg/m³, respectively, and where timber of a different density is to be used the thickness is to be modified in accordance with 5.1.4.
- 2. Where the coachroof coaming or deck is of plywood the Table thickness may be reduced by 30 %.
- 3. If the deck is covered with canvas or other approved sheathing the Table thickness may be reduced by 1.5 mm.
- 4. Where the beam spacing differs from that given in Table 19, the deck thickness is to be modified at the rate of 1.5 mm per 50 mm difference.

Table 19: Coachroof and deckhouse beams for motor, sailing and auxiliary craft

Length of	Spacing	At middle	e of beam	At ends	of beam
beam, m	centre to	Siding, mm	Moulding, mm	Siding, mm	Moulding, mm
	centre, mm	_	_	-	_
1.2	255	28	41	28	28
1.5	280	30	44	30	30
1.8	305	34	48	34	34
2.1	330	38	53	38	38
2.4	355	41	57	41	41
2.7	380	43	60	43	43
3.0	405	44	63	44	44
3.3	430	44	65	44	44
3.6	455	46	68	46	46
3.9	480	48	71	48	48

Length of	Spacing	At middle	e of beam	At ends	of beam
beam, m	centre to	Siding, mm	Moulding, mm	Siding, mm	Moulding, mm
	centre, mm	-	_	-	_
4.2	505	50	75	50	50
5.2	590	58	86.5		

NOTE

- 1. The Table scantlings are based on a timber having a standard density of 560 kg/m³ and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.
- 2. Where the beam spacing differs from that given in the Table, the strength of the beam is to be modified in direct proportion.
- 5.2.14.2.2 Where the coachroof deck is of plywood the thickness determined from Table 18 may be reduced by 30 %
- **5.2.14.2.3** Where plywood is sheathed with a laid deck the combined thickness may be 30% less than the thickness in Table 17 provided that:-
 - (a) the combined density of the plywood and sheathing is not less than 430 kg/m³
 - (b) the thickness of the plywood is not less than 30% of the combined thickness and in no case is less than 6 mm, and
 - (c) where the laid planking is less than 19 mm, the seams are d with an approved flexible seam compound.
- **5.2.14.2.4** If the coachroof deck is covered with canvas or other approved sheathing the thickness determined from Table 18 may be reduced by 1.5 mm.
- **5.2.14.2.5** Where the coachroof beam spacing differs from that given in Table 18 the strength of the beams is to be modified in direct proportion and the deck thickness is to be modified at the rate of 1.5 mm per 50 mm difference.
- **5.2.14.2.6** On small coachroofs where it is desired to dispense with beams the deck thickness will be specially considered.
- **5.2.14.2.7** The coachroof and side deck are to be adequately stiffened in way of the mast. Where a mast is stepped on the coachroof the structural arrangements will be specially considered.

5.2.14.3 Deckhouses

The scantlings of a deckhouse are dependent on the size of the house but the general standard of strength is to be that required for a coachroof and proposals will be specially considered.

5.3 Scantlings for Hard Chine Vessels

5.3.1 Keel and Hog

- **5.3.1.1** The keel shall be sided and moulded as indicated in Table 20, except in the case of single planked hard chine displacement vessels when they shall be as indicated in Table 3. The siding and moulding shown therein may be varied in accordance with the notes to these Tables.
- **5.3.1.2** The minimum hog siding and moulding shall be as shown in Table 20 except in the case of single planked hard chine displacement vessels when they shall be as indicated in Table 3 but may be varied in accordance with the notes to these Tables.

Hard Chine Vessels - Keel and Hog							
		Keel		Hog			
Measured	Section			Section			
length	area	Siding	Moulding	area	Siding	Moulding	
m	mm²	mm	mm	mm²	mm	mm	
5	7350	70	105	4200	120	35	
6	8625	75	115	5400	135	40	
7	10625	85	125	6750	150	45	
8	12150	90	135	8250	165	50	
9	14250	95	150	9900	180	55	
10	16800	105	160	10 725	195	55	

Table 20: Hard Chine vessels - Keel and Hog

Hard Chine Vessels - Keel and Hog								
		Keel			Hog			
Measured	Section			Section				
length	area	Siding	Moulding	area	Siding	Moulding		
m	mm ²	mm	mm	mm²	mm	mm		
11	18700	110	170	12600	210	60		
12	21600	120	180	14625	225	65		
13	23750	125	190	16800	240	70		
14	27000	135	200	19 125	255	75		
15	29400	140	210	20250	270	75		
16	33750	150	225	22800	285	80		
17	36425	155	235	25500	300	85		
18	40425	165	245	28800	320	90		
19	44200	170	260	31825	335	95		
20	48600	180	270	35000	350	100		
21	51800	185	280	36500	365	100		
22	56550	195	290	39900	380	105	ł	
23	60000	200	300	43450	395	110		
24	65100	210	310	47150	410	115		

NOTES:

- 1. Keel siding and moulding may be varied provided section area is maintained and siding is sufficient to provide 0.25 times the table siding on each side of the shaft tube.
- 2. Hog siding and moulding may be varied provided section area is maintained and

(i). Siding is sufficient for garboard plank landings of at least 1.75 times prank thickness on either side of keel: and

- (ii). Moulding is sufficient to provide 2.5 times plank thickness.
- 3. Vessels over 24 metres measured length will be specially considered by the Authority.
- **5.3.1.3** The keel and hog may be either laminated or of solid timber construction. Where of solid timber construction the keel and hog in vessels less than 10 metres in length shall be in one length, and for vessels 10 metres in length and over where the keel or hog is not in one length it shall be efficiently scarphed.
- 5.3.1.4 Where a keel or hog is scarphed, such scarphs shall be in accordance with 5.2.1
- 5.3.2 Stem
- **5.3.2.1** Stem scantlings at the heel shall in no case be less in siding and moulding than the scantlings for the keel determined from 5.3.1 and Table 20.

5.3.2.2 The scarph of the stem to keel shall not be less than 2.5 times the keel moulding in length.

5.3.3 Transom

- 5.3.3.1 Transom thickness shall be obtained from Table 21 and associated notes, except in the case of single planked hard chine displacement vessels when the transom thickness shall be obtained from Table 22
- **5.3.3.2** Transom should have space to allow for at least two outboard engines to be fitted for passengers and cargo vessels.

Hard Chine Vessels - Transom						
		*Sti	ffeners	Margin		
Measured length	Thickness plywood	Siding	Moulding	Siding	Moulding	
m	mm	mm	mm	mm	mm	
5	12	50	25	75	35	
6	12	55	25	80	40	
7	12	60	25	85	45	
8	12	60	30	90	45	

Table 21: Hard Chine Vessels Transom

Hard Chine Vessels - Transom							
		*Sti	ffeners	Ma	argin		
Measured	Thickness						
length	plywood	Siding	Moulding	Siding	Moulding		
m	mm	mm	mm	mm	mm		
9	16	65	30	95	50		
10	16	70	30	100	50		
11	19	70	35	105	50		
12	19	75	40	110	55		
13	19	80	40	120	60		
14	24	85	45	125	60		
15	24	90	45	130	65		
16	24	95	45	140	65		
17	24	95	50	145	70		
18	24	100	50	150	75		
19	24	105	50	160	75		
20	24	110	55	165	80		
21	30	115	55	170	80		
22	30	115	60	180	85		
23	30	120	60	185	90		
24	30	125	65	190	90		

• Stiffeners spaced at 450mm centre to centre.

NOTES:

- 1. Where planking is used table thickness is to be increased by 25%.
- Where stiffener spacing varies from the standard spacing of 450mm used in the table stiffener scantlings are to be adjusted by maintaining the section modulus of the stiffener per millimetre of stiffener spacing.
- 3. Transom thickness may be decreased if the stiffener spacing is less than the basic 450mm as follows: (i). Plywood-3mm per 50mm
- (ii). Planking-3mm per 30mm.
- 4. Plywood may be in multiple thicknesses to obtain the total thickness shown in the table.
- 5. The table scantlings are for hardwood of 960 kg/m³ density and marine grade waterproof plywood.
- 6. Vessels over 24 metres measured length will be specially considered by the Authority.

Table 22:	Transom

Transom						
		*Stiffe	eners	Mar	gin	
Measured						
length	Thickness	Siding	Moulding	Siding	Moulding	
m	mm	mm	mm	mm	mm	
5	28	50	25	75	35	
6	30	55	25	80	40	
7	32	60	25	85	45	
8	34	60	30	90	45	
9	36	65	30	95	50	
10	38	70	30	100	50	
11	40	70	35	105	50	
12	42	75	40	110	55	
13	44	80	40	120	60	
14	46	85	45	125	60	
15	48	90	45	130	65	
16	50	95	45	140	65	
17	52	95	50	145	70	
18	54	100	50	150	75	

Transom						
		*Stiffe	eners	Margin		
Measured						
length	Thickness	Siding	Moulding	Siding	Moulding	
m	mm	mm	mm	mm	mm	
19	56	105	50	160	75	
20	58	110	55	165	80	
21	60	115	55	170	80	
22	62	115	60	180	85	
23	64	120	60	185	90	
24	66	125	65	190	90	

• Stiffeners spaced at 450 mm centre to centre.

NOTES:

- 1. Table thickness is for single thickness planked construction. Where diagonal or multiple skin construction is adopted, the thickness may be reduced to 0.75 of that in the table.
- 2. Where stiffener spacing is less than the standard spacing or 450 mm used in the table stiffener scantlings may be adjusted by maintaining the section modulus of stiffener per millimetre of stiffener spacing. For example:

Vessel 20 m length-propose to use spacing-of 300 mm with siding of 100 mm:

Modulus per millimetre at table scantlings and spacing = 123

Required moulding = $\sqrt{\frac{123 \times 300 \times 6}{100}}$ = 47 mm

- 3. Where the stiffener spacing is less than the basic 450 mm the transom thickness may be decreased for every decrease in the resulting space between the stiffeners at the rate of 3 mm per 30 mm decrease.
- **5.3.3.3** Transoms shall have stiffeners, spaced at not more than 450 mm centres, together with margins. The stiffeners and margins shall have scantlings derived from Table 21 except in the case of single planked hard chine displacement vessels when the scantlings shall be obtained from Table 22.
- 5.3.3.4 A substantial knee shall be fitted and through bolted through the transom and the hog.

5.3.4 Web Frames

- **5.3.4.1** The scantlings for web frames are to be derived from Table 23. If the basic web frame spacing shown in Table 23 is not adopted, the scantling of the web frame shall be adjusted by maintaining the section modulus of the frame per millimetre of frame spacing.
- **5.3.4.2** Where a web frame is notched in excess of 12.5% of its depth to accommodate longitudinals, the moulding of the web frame shall be increased to maintain the required sectional area in way of the notch.
- **5.3.4.3** A floor timber of siding equal to that of the web frame, is to be used to connect the web frame members across the top of the keel and hog
- **5.3.4.4** Gussets or chocks shall be used to connect the bilge and topside sections of web frames. These shall be of adequate scantling and through fastened by bolts. Where web frames are not in one-piece suitable strengthening shall be provided in way of any joint.
- **5.3.4.5** Where web frames are used, intermediate frames of dimensions and spacings determined for bent frames are required to be fitted between the web frames.

10010 20. 110								
Т	Transverse Web Frames							
Measured	۱	Neb frame	es					
length	*Spacing	Siding	Moulding					
m	mm	mm	mm					
5	500	20	60					
6	550	25	65					
7	600	25	75					
8	650	30	80					

Table 23: Transverse web frames

Transverse Web Frames					
Measured	V	Web frames			
length	*Spacing	Siding	Moulding		
m	mm	mm	mm		
9	700	30	90		
10	750	35	95		
11	800	35	105		
12	850	40	110		
13	900	45	120		
14	950	45	125		
15	1000	50	135		
16	1050	50	140		
17	1100	55	150		
18	1150	60	155		
19	1200	60	165		
20	1250	65	170		
21	1300	65	180		
22	1350	70	185		
23	1400	75	195		
24	1450	75	200		

• Spacing is measured from frame centre to frame centre.

NOTES:

- 1. Where the basic spacing shown in the table is not adopted, frame scantlings are to be adjusted by maintaining the section modulus of the frame per millimetre of frame spacing
- 2. Frames of the above siding and moulding may be notched to a depth of not more than 12.5% of the moulding to house longitudinal stringers,
- **5.3.5** Intermediate Frames in Longitudinally Planked Hard Chine Hulls

Intermediate frames, of dimensions and spacing's determined for the frames in round bilge hulls having the same measured length, are required to be provided and fitted between the web frames. These frames should be housed into the chine a distance of not more than 10mm for their full cross-sectional area and dead nailed to the sheer clamp.

5.3.6 Floors

- **5.3.6.1** Floors shall be fitted at each transverse web frame and between web frames at not more than 450 mm centres
- 5.3.6.2 The siding and moulding of floors shall be determined from Table 24

Hard Chine Vessels - Floor			
	*Floors		
Measured length	Siding	Moulding at centre line	
m	mm	mm	
5	35	90	
6	35	100	
7	40	110	
8	40	120	
9	45	130	
10	50	140	
11	50	150	
12	55	160	
13	60	180	
14	60	190	
15	65	200	

61,

Hard Chine Vessels - Floor			
	*Floors		
Measured length	Siding	Moulding at centre line	
16	70	210	
17	70	220	
18	75	230	
19	80	250	
20	80	260	
21	85	270	
22	90	280	
23	90	290	
24	95	300	

* Floors spaced at 450mm centres.

NOTES:

- 1. Where floor spacing is less than 450mm, floor scantlings may be adjusted by maintaining the section modulus of the floor at the vessel's centre line per millimetre of floor spacing
- 2. Vessels over 24 metres measured length will be specially considered by the Authority.
- **5.3.6.3** Where floors are fitted in the throat of a web frame then the siding may be reduced to that of the web frame, provided the moulding is increased to maintain the section area at the vessel's centreline.

5.3.6.4 Intermediate floors between web frames shall extend and be fastened to a stringer.

5.3.7 Stringers

5.3.7.1 The scantlings of bottom stringers shall be determined from Table 24 and associated notes.

Bottom stringers					
Measured length	Spacing	Total section area per side	Moulding	Siding	
m	mm	mm ²	mm	mm	
5	215	2760	20	46	
6	245	4032	24	56	
7	270	5544	28	66	
8	295	7056	28	84	
9	260	8448	32	66	
10	280	9728	32	76	
11	300	11248	38	74	
12	320	12464	38	82	
13	280	14060	38	74	
14	300	15580	38	82	
15	325	17200	40	86	
16	345	18400	40	92	
17	310	20160	40	84	
18	330	21600	40	90	
19	340	22680	42	90	
20	355	24192	42	96	
21	325	25872	42	88	
22	340	27048	42	92	
23	355	28336	44	92	
24	370	30184	44	98	

Table 25: Hard Chine vessels bottom stringers

NOTES:

1. Where stringer spacing varies from the table, stringer scantlings are to be adjusted by maintaining the section

modulus of stringer per millimetre of stringer spacing

2. Where the spacing of web frames supporting bottom or side stringers varies from the table spacing the scantlings of stringers shall be increased or may be decreased for any increase or decrease respectively in web frame spacing by increasing or decreasing the section modulus in accordance with-the formula:

 $Z_1 = Z\left(\frac{S_1^2}{s^2}\right)$

Where Z = section modulus of table stringer as adjusted for stringer spacing, if applicable.

 Z_1 = required section modulus at new. spacing

 S_1 = table spacing for web frames

S = new spacing for web frames

- 3. Vessels over 24 metres measured length will be specially considered by the Authority.
- **5.3.7.2** A reduction in scantlings to 60% of the scantlings determined from Table 25 may be made for side stringers.
- **5.3.7.3** Stringers should run for the full length of the vessel wherever possible.
- **5.3.7.4** Where practicable, stringers should be in one length. If not in one length stringers shall be scarphed.
- **5.3.7.5** Where stringers are scarphed, scarphs shall be not less in length than 6 times the dimension of the edge or face scaphed, and suitably fastened.
- 5.3.7.6 Feather edge scarphs shall be suitably fastened and glued.

5.3.8 Chines

5.3.8.1 The minimum scantlings for chines shall be determined from Table 26

Vessels Chines				
Measured length	Sectional area	Siding	Moulding	
m	mm ²	mm	mm	
5	1458	27	54	
6	1800	30	60	
7	2312	34	68	
8	2628	36	73	
9	3200	40	80	
10	3872	44	88	
11	4560	48	95	
12	5354	52	104	
13	6272	56	112	
14	6844	58	118	
15	7688	62	124	
16	8712	66	132	
17	9248	68	136	
18	10366	72	144	
19	10952	74	148	
20	12168	78	156	
21	12800	80	160	
22	13440	82	164	
23	14450	85	170	
24	15480	88	176	

Table 26: Hard Chine vessels Chines

- **5.3.8.2** The ratio of siding to moulding of chines is generally not to be greater than 1 to 2. In any case the siding shall be sufficient to provide a faying surface equal to 2.5 times the thickness of the bottom planking.
- 5.3.8.3 Where practicable, chines should be in one length. If not in one length chines shall be scarphed.

- **5.3.8.4** Where chines are scarphed, scarphs shall be not less in length than 6 times the siding and suitably fastened.
- **5.3.8.5** The ends of diagonal planking and plywood shall be protected at the chine edge.

5.3.9 Chines for Single Planked Vessels

- (a) The dimensions of chines are to be determined from Table 27
- (b) Where practicable, chines should be in one length, but may be scarphed, in which case the scarphs shall be not less in length than 6 times the moulding and be edge bolted.

Measured		Chines	•		Stringers	
length	Section	siding	moulding	Section area per	siding	Moulding
	area			side		
m	mm²	mm	mm	mm²	mm	mm
5	1950	30	65	5400	60	30
6	2450	35	70	5850	65	30
7	3000	40	75	7350	70	35
8	3600	45	80	8400	80	35
9	4250	50	85	9600	80	40
10	4950	55	90	11400	95	40
11	6000	60	100	14175	105	45
12	7150	65	110	14850	110	45
13	8050	70	115	18000	120	50
14	9375	75	125	18750	125	50
15	10800	80	135	22275	135	55
16	12325	85	145	23100	140	55
17	13950	90	155	27000	150	60
18	15675	95	165	31200	160	65
19	17000	100	170	32175	165	65
20	18375	105	175	36750	175	70
21	19800	110	180	37800	180	70
22	21 275	115	185	42750	190	75
23	22800	120	190	45000	200	75
24	24375	125	195	49200	205	80

Table 27: Chines and Stringers (Single planked hulls)

NOTES:

1. At least 3 stringers shall be fitted on each side of a round bilge hull and in the bottom of chine hulls. Where more than 3 stringers are fitted their scantlings shall be subject to special consideration by the Authority.

2. Stringers may be laminated. Each lamination should be not less than 12mm in thickness

3. Scantlings of chines and stringers may be reduced from those shown in the table by a uniform taper of both siding and moulding by up to 20% of the cross-sectional area beyond 0.6L amidships.

5.3.10 Beam Shelf/Sheer Clamp

5.3.10.1 A suitable beam shelf and/or sheer clamp shall be fined and the minimum section area shown in Table 28 is to be maintained.

Table 28: Hard Chine Vessels - Beam Shelf/ Sheer Clamp

Measured length	Section area
m	mm ²
5	2300
6	2500
7	3250
8	4050
9	4900
10	6000
11	6970
12	7420

Measured length	Section area
m	mm ²
13	8500
14	9620
15	10800
16	12350
17	13650
18	15370
19	15750
20	17200
21	19120
22	20700
23	22320
24	24500

NOTE:

Vessels over 24 metres measured length will be specially considered by the Authority.

- **5.3.10.2** The siding of the sheer clamp shall be sufficient to maintain faying surfaces equal to twice the deck planking thickness.
- 5.3.11 Fitting of Longitudinal Members
- **5.3.11.1** Beyond 0.6L amidships the scantlings of stringers, chines, sheer clamps and beam shelves may be reduced by a uniform taper of both moulding and siding by up to 20% of the cross-sectional area shown in the Tables.
- **5.3.11.2** Scarphs in stringers, sheer clamps, beam shelf etc. may not be closer than the web frame spacing, measured between the closest extremities of the scarphs considered. Scarphs are not permitted in way of bulkheads, web frames or in line with keel scarphs. The scarph in a sheer clamp shall not be closer to the butt in a sheer strake than one web frame spacing.
- **5.3.11.3** Breasthooks of grown timber or chocks of straight grain or brackets are to be fitted at the forward end of the hull between the stem and: .
 - (i) Sheer clamp
 - (ii) Chines in vessels of 12.5 metres in length and over.
- 5.3.11.4 Grown knees, solid chocks or brackets are required to be fitted between the transom and:
 - (i) Sheer clamp
 - (ii) Chines in vessels of 12.5 metres in length and over
 - (iii) Every second stringer in vessels of 12.5 metres in length and over.
- 5.3.12 Watertight Bulkheads

Watertight Bulkheads are to have scantlings determined from 3.2.8 and associated notes.

- 5.3.13 Hull Planking
- **5.3.13.1** The hull planking thickness shall be determined in accordance with Table 29 and associated notes.
- **5.3.13.2** Where in double planked fully glued diagonal construction the planking layers are laid parallel to each other, then the overlap between alternate layers shall be not less than 4 times the plank thickness and not more than half the plank width.

Measured length	Bottom		Topside		
Measured length	Plywood	Double diagonal	Plywood	Double diagonal	
m	mm	mm	mm	mm	
5	9	15	9	15	
6	11	17	9	15	
7	12	19	9	15	
8	14	21	11	16.	

Table 29: Hard Chine Vessels - Hull Planking Thickness

Moscured longth	Bottom		Т	opside
measured length	Plywood	Double diagonal	Plywood	Double diagonal
m	mm	mm	mm	mm
9	15	23	11	18
10	16	25	12	19
11	18	26	14	20
12	20	28	15	21
13	21	30	16	23
14	22	32	17	24
15	24	34	18	26
16	25	36	19	27
17	27	38	20	29
18	28	40	21	30
19	30	42	22	32
20	31	44	23	33
21	33	45	25	34
22	34	47	26	36
23	36	49	27	37
24	37	51	28	39

NOTES:

- 1. Where stringer spacing differs from the basic stringer spacing's shown in Table 25 planking thickness shall be increased and may be decreased for every increase or decrease respectively in the resulting span between stringers as follows:
 - (i). Plywood-3 mm per 50 mm difference
 - (ii). Diagonal planking-3 mm per 30 mm difference.
- 2. Plywood may be in multiple thicknesses to obtain the total thickness shown in the table.
- 3. The table scantlings are for hardwood of 960 kg/m³ density and marine grade water-proof plywood to Australian Standard AS 2272-Plywood for Marine Craft.
- 4. Table thicknesses for double diagonal planking are applicable only to hulls where planking layers are glued together.
- 5. Vessels over 24metres measured length will be specially considered by the Authority.

5.3.14 Deck Beams

Scantlings of ordinary deck beams are not to be less than those determined from 5.2.10 and associated notes.

5.3.15 Deck Planking

Deck planking thickness shall be determined in accordance with 5.2.11 and associated notes.

5.3.16 Pillars

The scantlings of pillars shall be determined in accordance with 5.2.12 and associated notes.

5.3.17 Engine Seating

The installation of engine seating shall be in accordance with 5.2.13 and associated notes.

5.3.18 Deckhouses

Deckhouses are to have scantlings determined from 5.2.14 and associated notes.

5.4 Supplementary Provisions

5.4.1 Additional requirements for passenger boats

Sufficient handrails shall be securely installed on the outside of wheelhouse, deckhouse and in the interior of wheelhouse/deckhouse to the satisfaction of the Surveyor.

5.4.2 Additional requirements for fishing boats

- **5.4.2.1** In every decked vessel, sufficient bulwarks, guard rails or guard wires shall be provided at the exposed parts of the freeboard and superstructure decks and the tops of any deckhouses or companionways used in the operation of the vessel.
- 5.4.2.2 In every decked vessel, adequate guard rails, lifelines, gangways or passages shall be provided

for the passage of the crew between their quarters, machinery spaces and working spaces. Storm rails shall be fitted on the outside of all deckhouses and casings.

- **5.4.2.3** Controls of winches, line and net hauling shall be placed in a manner that the operators have ample room for their unimpeded operation and that they have a clear view on the working area. The winches and equipment shall be fitted with safety devices that are designed to prevent accidents.
- **5.4.2.4** Flooring in fish rooms may be of either cement or timber. Where of cement, drain channels are to be fitted, draining to the bilge or slushwell.
- **5.4.2.5** All grounds and hull structure not easily accessible after completion of construction are to be treated with at least three coats of a non-toxic wood preservative.

6 Manufacturing Facilities and Workmanship

6.1 Manufacturing Facilities

- **6.1.1** Workshop conditions, material storage, and handling must be such that materials shall be free from contamination, readily accessible, and appropriate for the vessel to be built.
- 6.1.2 Materials that would deteriorate with exposure to the weather shall be stored under cover.
- **6.1.3** The Boatbuilder shall have processes to effectively monitor, verify and document the quality of construction and compliance with design documentation throughout the build program and at its completion.

NOTES:

- 1. This would include ongoing inspections and/or tests at critical stages of construction.
- 2. A quality management system provides a widely recognized framework to facilitate the compliance of a vessel with quality and compliance standards.
- **6.1.4** All boatbuilding manufacturing facilities shall be identified, recognized and registered by the overseeing authority.

6.2 Workmanship

6.2.1 General

The workmanship applied to the construction of vessels shall be of sufficient quality to achieve the outcomes of structural strength and watertight integrity required by the provisions of this standard.

All boatyard workers shall be registered by the overseeing authority with identification numbers that categorise areas of specialization and expertism.

6.2.2 Construction procedure

6.2.2.1 Workshop requirements

All boatyard workshops shall be inspected by surveyor(s) and on successful inspection, workshop safety certificate shall be issued.

The craft is to be suitably protected during the building period from adverse weather and climatic conditions. The minimum protection to be provided is normally a substantial and efficient roof projecting beyond the length and breadth of the craft. Where laminated glued construction is being extensively used, a building shed with controlled temperature and humidity levels may be required.

- **6.2.2.2** Workmanship is to be well executed and carried out under adequate supervision throughout the preparation and building of the craft. The various parts of the structure are to be properly faired and fitted.
- **6.2.2.3** When a hull is to be transported for fitting out and completion elsewhere, the construction should be progressed to a stage commensurate with the method of transport to be used. When a partially completed vessel is to be towed or propelled afloat, the Boatbuilders are to ensure that its stability and weathertightness is adequate prior to its removal from the Boatbuilders yard.

6.2.3 Preservative treatment

The preservatives are preferably to be applied by dipping and soaking or by pneumatic spray but where these methods are not practicable a liberal application by brush can be used. The timber is to be treated when all work on the member is complete, but where cut or bored after treatment a liberal brush application is to be applied to the exposed timber.

6.2.4 Plywood

All edges and cut-out areas are to be thoroughly sealed by glues, varnishes, paints or other suitable compositions to prevent moisture penetrating along the end-grain.

- 6.2.5 Gluing process
- **6.2.5.1** The timber is to be clean and dry, and the joining surfaces are to be properly prepared and free from dust and grease. The adhesive is to be evenly applied and the joint closed within the manufacturer's recommended closing time in order to obtain a thin and uniform glue line. Sufficient clamps and other pressure devices are to be used and the pressure is not to be released until the joint has set.
- **6.2.5.2** Modified urea-formaldehydes may be used in parts of the structure which will not be commonly subjected to continuously wet conditions and will be well ventilated. These parts include the coach roof and superstructures in both wood and plywood craft and internal structural assemblies which are clear of the bilges in plywood craft only. The glue lines in these structures are to be protected by several applications of varnish or paint.
- **6.2.5.3** The glues are to be mixed and applied in accordance with the manufacturer's instructions and with due regard to the shop temperature and humidity requirements. Due attention is to be paid to the application techniques for the species of timber being glued and the manufacturer's advice should be sought in the working of difficult timbers and the effect of preservatives on the materials.
- 6.2.6 Laminated timbers
- **6.2.6.1** The layers forming the lamination are generally to be of the same timber species and are to be of even moisture content. The grain of the layers is to be approximately parallel to the length of the member, and special attention is to be paid to grain in the selection and assembly of the timber.
- **6.2.6.2** Where practicable the layers are to be continuous, and if this is not possible, the layers are to be scarph jointed, the slope of the scarph being not greater than 1 in 10.
- **6.2.6.3** Where the layers are bent to produce members of curved form, the thickness of each layer is to be such that the layer will not be unduly stressed in forming, and that a satisfactory inter laminar bond can be achieved.
- 6.2.7 Fastening practice
- **6.2.7.1** Attention is to be paid to the fastenings throughout, particularly the size and disposition. The boring of the timber to receive the fastenings is to be properly executed, according to the density of the timber and the type and material of the fastening.
- **6.2.7.2** All hull and deck through-fastenings are to be of a composition similar to that of any metal members they secure. Where this cannot be arranged, suitable insulation is to be fitted to prevent contact between dissimilar metals.
- **6.2.7.3** Where craft are sheathed with copper or other non-ferrous metals, iron or steel fastenings are not to be used in way.
- **6.2.7.4** Through bolts are to be clenched on rings or washers or are to be fitted with nuts. Nuts, rings or washers are to be of the same material as the bolts.
- **6.2.7.5** Where bolt fastenings pass through the outside planking or centreline structure, cotton or other suitable grommets are to be fitted under the heads. Keel bolt and centreline fastening holes are to be treated with a suitable composition.
- **6.2.7.6** Where screw fastenings are used, the thread of the screw must enter the frame or beam a minimum distance equal to the thickness of the hull or deck planking.

7 Compliance and Boats Identification

7.1 General

It is the responsibility of the Boatbuilder/Owner of the new vessel to be constructed to this guideline to inform the Overseeing Authority on the intention to build and register the vessel.

7.1.1 Prior to commencement of construction the Boatbuilder/Owner is to provide the following information:

- -
- (a) Dimensions and power;
- (b) Intended use of the vessel
- (c) Construction material with attached certificate of material assessment by a competent forest authority;
- (d) Place of build (hull)
- (e) Place of outfit (where differing from build location)
- (f) Proposed date of commencement of construction
- (g) Proposed date of completion of vessel
- (h) Area of operation
- (i) Boatyard certificate issued by the Overseeing Authority

7.2 Safety Compliance Notice

- **7.2.1** Every Boat constructed according to these Guidelines shall have fitted to it, in a conspicuous position, plainly visible from the helm (unless exempt by regulation), a Safety Compliance Notice issued by the Overseeing Authority
- A Compliance Notice is defined as either:
 - (a) Conformity Label,
 - (b) Capacity Label,

Example of Marked Information

The Conformity Label shall include the following:

- (a) name of manufacturer;
- (b) manufacturers or constructor's identification code, MIC;
- (c) model type or number, or both;
- (d) label number; and
- (e) statement of compliance.

Tanzania Shipping Agencies Corporation (TASAC)				
BOATBUILDER: ABC IMAGINARY CO (AAAA) ie MIC				
The manufacturer certifies that this Boat complies with the requirement of the construction Standards				
for wooden Boats				
MAXIMUM LOAD MAXIMUM OCCUPANTS MAXIMUM POWER				
kg Persons KW (HP)				
No XXXX0016				

Figure 21: Conformity Label Example

7.3 Hull Identification Number (HIN)

The identification code consists of 12 consecutive characters displayed as capital letters of the alphabet or Arabic numerals with no spaces, slashes (oblique's), or hyphens between them. The code comprises:

- (a) a three-digit Manufacturer's Identification Code (MIC); followed by
- (b) a five-character Manufacturer's Hull Serial Number; and
- (c) four figures giving the date of manufacture.

7.3.1 Manufacturer's Identification Code (MIC)

The MIC consists of three characters displayed as block capitals or numbers, forming the first three characters of the HIN, as issued by the Overseeing Authority.

7.3.2 Manufacturer's Hull Number

- **7.3.2.1** The fourth through eighth characters of the HIN are the individual Manufacturer's Hull Number, which is defined by the manufacturer.
- **7.3.2.2** No two Boats shall be assigned the same Manufacturer's Hull Number.
- **7.3.2.3** The Manufacturer's Hull Number shall consist of capital letters of the alphabet or Arabic numerals, or both, except that the letters "I," "O," and "Q" shall not be used.
- 7.3.3 Date of Manufacture

7.3.3.1 The ninth through twelfth characters of the HIN indicate the date of manufacture. The ninth character is a capital letter of the alphabet indicating the month from when the craft is considered to have commenced construction and is defined as follows:

A=January, B=February, C=March, D=April, E=May, F=June, G=July, H=August, I=September, J=October, K=November, L=December

7.3.3.2 The tenth is an Arabic numeral designating the last digit of the year of manufacture.

7.3.3.3 Characters eleven and twelve are Arabic numerals marking the model year of the Boat.

ABC2AB41G091							
Manufacturer's Manufacturer's Hull		Commencement of	Model year				
	Number	Construction					
ABC	2AB41	G0	91				

Figure 22: Example of Twelve-Digit Hull Identification Number (HIN)

Figure 22 is a typical example of a complete twelve-digit HIN for a Boat where construction commenced in July 1990 for the 1991 model year

Annex A (informative)

Mean Strength Properties of Tanzania Timbers

SN.	Botanical name	Trade name	Density	Static bending Centre Compression			Hard	Shear
			-	loading			(Resistance	
					-		to	
							indentation)	
				Max	Stiffness		_	
			ى ت	bending		u o	ain	F 0
			E E	strength		gth bl t	gr	n lt
			dr %	MOR	MOE	lax ence allo	de	Sl allo rai
			lir 12	WOR	NICE	g ar a g	Si.	ax. arra
			At At			los å	- Lo	Σ°°d
			Ka/ m ³	N/mm ²	N/mm ²	N/mm ²	N	N/mm ²
	1	2	3	4	5	6	7	8
1.	Acacia mearnsii	Black wattle	722	121	14372	60.8	7778	15.6
2.	Acacia melanoxvlon	Australian black wood	689	101	15269	60.44	4640	19.2
3.	Acacia nigrescens	Mkambala	1122	132	13793	76.2	19067	21.8
4.	Afzelia quanzensis	E.A. afzelia	833	114	10441	69.2	8222	19.0
5.	Albizia amara	Mkengehovu	677	114.7	9753	50.8	-	20.5
6.	Albizia gummifera	Mfuranji	465	79	8379	42.2	2844	15.3
7.	Albizia versicolor	Mtanga	657	60	7227	43.0	4627	14.7
8.	Albizia zygia	Nongo	577	89	10570	44.1	5155	15.4
9.	Allanblackia stuhlmannii	Allanblackia (msambu)	-	76	19359	39.9	3849	10,2
10.	Brachystegia spiciformis	Mtundu	817 (G)	126	13406	68.7	8133	18.0
11.	Brachystegia microphylla	Mseni	769	93	9797	68.7	84444	19.1
12.	Breonadia salicina	Mgwina	962	85	12504	61.6	9778	14.6
13.	Callitris robusta	Cypress pine	561	78	6639	45.2	4400	-
14.	Casearia battiscombei	White matua	625	85	9683	47.5	3209	14.3
15.	Cassipourea malosana	Pillar wood	737 (G)	112	11602	67.7	5555	19.0
16.	Cedrela odorata	Central American cedar	433	58	7538	36.0	2027	9.5
17.	Cephalosphaera usambarensis	Mtambara	561	98	15791	46.2	3289	15.4
18.	Chrysophyllum albidum	Mululu	721	133	13148	71.4	6933	-
19.	Cinnamomum camphora 29 yrs	Japanese camphor	493 (G)	71	7814	38.8	2875	12.0
20.	Cocoa nucifera	Mnazi	601	67	77938	45.4	4813	8.1
21.	Cordyla africana	Mroma	833	84	11248	59.8	7022	-
22.	Croton megalocarpus	Musine	705	102	-	53.9	6000	-
23.	Cupressus Iusitanica (18yrs)	E.A. cypress	481	73	8172	42.3	2698	14.2
24.	Diospyros abyssinica	Msambu						17.3
25.	Diospyros mespiliformis	African ebony	753	98	11145	53.0	6769	18.6
26.	Ekebergia capensis	OI mokuma	497	58	-	28.7	4000	-

×G

SN.	Botanical name	Trade name	Density	Static bending Centre		Compression	Hard (Resistance	Shear
				loading			to	
						X	indentation)	
				Max	Stiffness		linuoniaitorij	
			പ്_	bending	•	5 o	ain	o ar
			ie u	strength			gra	hea gth n
			dr dr	MOP	MOE	alle rai	de	SI SI SI SI SI SI SI SI SI SI SI SI SI S
			L 12	WOR	WICL	arr a	S.	ax. stro arr g
			¥ 4			0,	NO	≥″ä
			Ka/ m ³	N/mm ²	N/mm ²	N/mm ²	N	N/mm ²
	1	2	3	4	5	6	7	8
27.	Entandrophragma exceisum	Mrie	465	52	7154	33.7	2044	10.9
28.	Erithrophieum africanum	Mkarati	-	162	15404	97.1	12978	26.4
29.	Erithrophieum suaveolens	Mwavi	978	145	14180	91.7	8222	16.6
30.	Eucalyptus botryoides (20 yrs)	Southern mahogany	779	124	14676	66.0	5693	16.9
31.	Eucalyptus globulus (14 yrs)	Tasmanian blue gum	784	108	14041	62.6	5867	17.2
32.	Eucalyptus globulus (19 yrs)	Tasmanian blue gum	662	97	11572	49.7	3435	13.8
33.	Eucalyptus maideni (14yrs)	Maiden's gum	807	131	16000	66.7	7164	18.3
34.	Eucalyptus maideni (20 yrs)	Maiden's gum	843	121	12558	60.7	6253	17.0
35.	Eucalyptus microcorys (15yrs)	Tallow-wood	849	117	14055	66.9	5867	19.6
36.	Eucalyptus paniculata (14 yrs)	Paniculata gum	626	88	10283	51.6	3747	13.6
37.	Eucalyptus paniculata (47 yrs)	Paniculata gum	1010	182	24879	96.3	13778	20.2
38.	Eucalyptus regnans (14 yrs)	Australian ash	570	75	9600	45.4	3373	14.4
39.	Eucalyptus salgina (35 yrs)	Blue gum	753	123	16887	67.6	6133	12.2
40.	Eucalyptus saligna (14 yrs)	Blue gum	527	81	9924	44.9	2533	11.6
41.	Fagaropsis angolensis	Mafu	673	110	13565	61.7	6080	19.6
42.	Ficalhoa laurifoloia	Mkuka	675	94	10634	52.5	4978	13.4
43.	Grevillea robusta	Grevillea	609	62	7154	36.3	3733	8.8
44.	Hagenia abyssinica	Ol kijabe	657	90	9138	50.4	5218	18.4
45.	Hallea rubrostipulata	Mromberombe	625	84	10055	47.6	3689	12.8
46.	Hymenaea verrucosa	Mtandarus	817	111	11227	61.4	9244	22.9
47.	llex mitis	Msaira	597	66	7890	35.3	5107	12.5
48.	Isoberlinia scheffieri	Mbarika	801	108	13676	58.8	6293	13.3
49.	Julbernardia globiflora	Muwa	946	142	14566	81.1	12267	23.8
50.	Juniperus procera	African pencil cedar	513	91	8379	39.3	1911	12.8
51.	Khaya anthotheca	Mkangazi	657	66	9604	48.3	5111	10.1
52.	Macaranga conglomerata	Muhaa	465	62	8014	36.9	2267	11.7
53.	Macaranga kilimandscharica	Muhaa	497	71	-	43.1	3111	-
54.	Manilkara obovata	Nkunya	1026	158	19143	82.0	15244	19.7
55.	Maranthes goetzeniana	Nganga	929	101	11988	52.8	8444	15.0
56.	Markhamia platycalyx	Msambia	561	110	-	56.3	-	F

SN.	Botanical name	Trade name	Density	Static bending Centre		Compression	Hard (Resistance	Shear
				loaung			to	
							indentation)	
				Max	Stiffness		· · · ·	
			<u>ب</u> ن	bending		5 0	ain	io_ar
			Lie I	strength		n egt ssi	gr	be bel t n
			dı dı	MOR	MOF	la) all rai	de	en sell
			t:1,			arr str	si	lax str arr g
			A I			og d	ō	2 0
			Kg/ m ³	N/mm ²	N/mm ²	N/mm ²	N	N/mm ²
	1	2	3	4	5	6	7	8
57.	Pseudolachnostylis maprouneifolia	Mtunguru	876	106	12400	54.4	7809	17.6
58.	Milicia excelsa	Mvule	657	90	9345	54.7	5600	15.6
59.	Millettia stuhlmannii	Pangapanga	849	118	12697	71.5	7227	20.2
60.	Neoboutonia macrocalyx	Mfurufuru	390	50	8034	27.4	1662	9.1
61.	Newtonia buchananii	Mkufi	561	97	9926	50.1	4622	15.4
62.	Newtonia paucijuga	Mdadalike	721	98	11393	56.5	6120	19.5
63.	Ocotea usambarensis	E.A. camphor	593	91	9926	52.5	4133	16.5
64.	Ocotea usambarensis (second growth 40 yrs)	E.A. camphor wood	529	79	9281	48.8	2844	13.4
65.	Olea capensis	Loliondo	737	91	10828	59.2	6267	18.9
66.	O. capensis var. macrocarpa	Musharagi	913	174	17467	84.0	12178	28.1
67.	Parinari exelsa	Mula	753	123	13406	65.8	7644	20.1
68.	Pericopsis angolensis	E.A. percopsis	946	111	12317	76.0	10018	20.1
69.	Pinus caribaea (13yrs)	Caribbean pine	421	51	6076	31.9	1760	9.2
70.	Pinus montezumae (18yrs)	Mexican pine	447	58	7896	33.2	2204	11.6
71.	Pinus patula (17yrs)	Patula pine	417	61	6445	34.5	1467	11.2
72.	Pinus patula (22yrs)	Patula pine	449	71	7605	39.5	1867	12.9
73.	Pinus patula (30yrs)	Patula pine	-	83	9023	46.7	2578	14.6
74.	Pinus patula (15yrs)	Patula pine	505	56	8228	31.6	2044	8.8
75.	Pinus patula (25yrs)	Patula pine	518	52	8317	33.2	2342	10.3
76.	Pinus radiata (18yrs)	Radiata pine	465	51	7759	33.7	2138	10.7
77.	Pinus radiata (33yrs)	Radiata pine	611	87	11945	52.4	-	-
78.	Podocarpus spp	Podo	513	82	8057	43.1	3689	15.1
79.	Polyscias fulva	Mfumbati	368	38	5834	26.2	1196	8.0
80.	Populus canescens	Grey poplar	616	75	9663	45.9	3209	13.3
81.	Pouteria adolfi-friedericii	Manu	535	63	7331	25.8	2933	12.7
82.	Pseudolachnostylis maprouneifolia	Mtunguru	876	106	12400	54.4	7809	17.6
83.	Pterocarpus angolensis	Muninga	657	94	8443	57.0	6578	17.2
84.	Pterocarpus tinctorius	Muninga maji	765	88	9842	58.1	8500	17.9
85.	Prunus	Mueri	785	122	11279	63.2	8267	19.9
86.	Sclerocarya birrea	Mng'ong'o	561	53	3931	35.2	4222	14.2

SN.	Botanical name	Trade name	Density	ty Static bending Centre loading		Compression	Hard (Resistance to indentation)	Shear
			At 12% m.c. Air dried	Max bending strength MOR	MOE	Max. compression strength parrallel to grain	: On side grain	Max. Shear strength parrallel to grain
		2	Kg/m ³	N/mm ²	N/mm ²	N/mm²	N 7	N/mm ²
87	I Sclerocania caffra	Z Mng'ong'o	3 545	4 51	5607	203	3689	o 11.0
88	Spirostachyvs africana	Msaraka	962	107	8637	59.9	8933	19.6
89.	Sterculia appendiculata	Maude	430	67	9098	40.0		10.3
90.	Sterculia guingueloba	Mbalamwezi	753	75	9539	41.5	5955	11.5
91.	Strombosia scheffieri	Msangana	881	123	14159	68.4	7507	-
92.	Bobgunnia madagascariensis	Kasanda	1080	158	18700	81.3	-	18.7
93.	Tectona grandis (20yrs)	Teak	625	85	10930	52.5	3969	15.0
94.	Terminalia ivorensis	ldigbo	540	79	10686	46.0	-	11.8
95.	Terminalia sambesiaca	Mkurungu	753	98	11903	62.1	6351	18.3
96.	Terminalia superba	Afara	383	32	5103	25.5	1369	7.6
97.	Vitex doniana	Mfuru	481	43	4676	28.0	3044	8.9
98.	Warburgia stuhlmannii	E.A. greenheart	873	111	11703	61.9	8169	19.7
99.	Xeroderris stuhlmannii	Xeroderris	817	114	14200	62.0	-	15.0
100.	Xymalos monospora	Mburano	577	74	8731	45.6	3542	15.0
101.	Zanha africana	Mkalya	801	80	8731	48.3	6689	17.1

Source: The commercial Timbers of Tanzania by J.M. Bryce and Revised by A.W. Chihongo.

Oral KO'

Third edition 2003, published by Tanzania Forestry Research Institute.
Annex B (informative)

Swahili Terms in Wooden Boat Building

SN	English Name	Swahili Name
1.	A beam	Tanga kati
2.	Abaft	Tezi
3.	Aboard	Chomboni
4.	Amidships	omo
5.	Aperture	Kidirisha
6.	Armature	Amecha
7.	Ballast	Farumi, weka Farumi au changarawe
8.	Bilge Stringer	Tamkisi
9.	Boom	Foromali
10.	Bulk Head	Ukuta wa ndani/kiambaza
11.	Bulwark	Kinga
12.	Clamp	Darumeti
13.	Clinker	Mavi chuma
14.	Clinker Bilt	Jengo mweleko
15.	Corrosion	Mbabuo anga hewa
16.	Covering Board	Flali
17.	Deck	Staha
18.	Deck Beam	Fundo
19.	Engine Bed	kitanda cha injini
20.	Engine Bed Bolts	Bolti za kitanda cha injini
21.	Engine Box	Sanduku la injini
22.	Engine Floor	Sakafu ya injini
23.	Fender	Kofi
24.	Floor Beams	Mbao za kufungia mlingoti
25.	Floor Boards	Mbao za sakafu
26.	Floors	Aligama
27.	Foundation Bolts	Misumari ya ghabu
28.	Frame	Taluma
29.	Free hand sketch	Mkakato
30.	Garboard	Mbao za matiki
31.	Hatch	Falika
32.	Hog/Keelson	Bitana
33.	Keel	Mtako/Mkuku
34.	Keel Bolts	Misumari yam kuku
35.	Keel Scarph	Skafu ya Mkuku/Mtako
36.	Knee	Betana
37.	Longitudinal Beam	Darumet
38.	Mast	Mlingoti
39.	Mast Partner	Kifundo
40.	Mast Step	Mastem
41.	Outrigger Boom	Mkingiko
42.	Outrigger Clamp	Kiwango
43.	Planking	Mbao za mbavuni
44.	Plug	Hasho
45.	Railing	Mahilenyi
46.	Rudder	Usukani
47.	Samson Post	Mangili
48.	Seam	Jongo

49. 50. 51. 52. 53.	Seat or After Deck	
50. 51. 52. 53.	Sheer Clamp	Staha
51. 52. 53.		Kofi
52. 53.	Stem	Fashini ya mbele
53.	Stem Knee	Betana ya mbele
	Stern	Shetri
54.	Stern Knee	Betana ya nyuma
55.	Stern Post	Fashini ya nyuma
56.	Stiffener	Kiyabisishi
57.	Stop Water	Gurunzi
58.	Thwart	Kiti
59.	Tiller	Kana
60.	Transom	Chanda
61.	Transom Knee	Betana ya chanda
62.	Ventilation Hole	Tundu la hewa
63.	Vessel/Craft	Chombo
64.	Water Proof	Jarabati maji
65.	Worm Shoe/Keel shoe	Kiatu cha mkuku
	RUK	
~		

Annex C (informative)

Sample scantling for round bilge hull

Table	C.1: Keel,	hog,	stem,	stern	post	and	fastenings	s for	motor,	sailing	and	auxiliary	/ craft
	/								/				

					(inf	ormative	e)			.C
				Sam	ple scantlin	ng for ro	und bilge h	ull		X
Main dime	nsions: Loa=	20m, Brea	ath = 6.2m a	nd Depth = 2	2.4m					
Table C.1	I: Keel, hog, s	stem, sterr	n post and fa	stenings for	motor, sailir	ng and au	xiliary craft			
Longth	Mc Sailing and	oulding and auxiliary	I siding of keel Motor		Siding and moulding of stem at heel, mm		Siding and moulding of stem at head and sternpost mm		Diameter of bolts, mm,	
Lengui, L, m	Moulding. mm	Siding, mm	Minimum siding of keel, mm	Sectional area of keel or keel and hog, cm ²	Sailing and auxiliary	Motor	Sailing and auxiliary	Motor	Centreline structure	Keel scarph
20	195	385	150	520	205	195	165	150	20	14

Table C.2: Frames for Motor, Sailing and Auxiliary Craft

See associated	see associated notes							
Table C.2: Fra	Table C.2: Frames for Motor, Sailing and Auxiliary Craft							
Dept	th, D, m		Type 2 Gro	wn frame o	nly			
Motor	Sailing and auxiliary	Siding, mm	At heel At heel	At head wu	Frame Spacing, , mm			
-	2.4	42	50	37	255			
2.4	-	52	61	46	280			

Table C.3: Floors for motor, sailing and auxiliary craft

Depth	, D. m	Floors on grown or laminated frames						
Motor	Sailing	Length r	nm Strap		floors. Wood floors at		middle line	Steel angle
WOUT	auxiliary For 3/ auxiliary amid-s		Beyond 3/5L amid-ship	At throat	At point	Moulding mm	Siding mm	bar mm
-	2.4	480	350	45 x 16	40 x10	95	45	45 x.45 x5
2.4	-	530	390	50 x 19	45 x 10	115	55	50 x.50 x5

See associated notes

Table C.4: Floor fastenings for motor, sailing and auxiliary craft

Depth,	Depth, D, mm		ts in throat, mm	Diameter of bol	ts at arms, mm			
Motor	Sailing and auxiliary	Grown laminated or steel frame	Bent frame	Grown laminated or steel frame	Bent frame	×9		
-	2.4	12	8	8	6			
2.4	-	12	10	10	8			
See associated notes								
able C.5: Beam shelf and bilge stringer scantlings and fastenings for motor, sailing and auxiliary craft								

T - I- I -		منتبغه مندائط امتدعا		and fastantin as	f	a a lline ar a se al	a sublim source of	à.
rable	C.5: Beam sne	i and blige string	ger scantlings	and lastenings	for motor,	salling and	auxiliary crai	ι

Length	Cross-se area of bea cm	ectional am-shelf, 1 ²	Cross-sectional area of bilge stringer, cm ²		Diameter of bolts, mm,			Steel side keelson and bilge stringer angles, mm
, L, m	Sailing and auxiliary	Motor	Sailing and auxiliary	Motor	Arms of breast- hook	Beam shelf stringers	Hanging knees	
20	150	130	105	100	14	12	12	75 x65 x 5.5

NOTE

The Table scantlings for the beams shelf and bilge stringer are based on a timber having a standard density of 560 kg/m³ and where timber of a different density is to be used the scantlings are to be modified in accordance with 5.1.4.

Table C.6: Timber bulkheads

Hoight of	Planking		Stiffener			
bulkhead	Double planked	Ply- wood	Stiffener spacing	Moulding	Siding	
m	mm	mm	mm	mm	mm	
2.5	50	25	450	115	65	

See associated notes

Table C.7: Bulkhead plating and stiffeners for motor, sailing and auxiliary craft

Bulkhead pl	ating and spacing of stif	Stiffeners with free ends						
Depth of bulkhead at	Thickness of plating,	Spacing of stiffener,	Overall length of	Height of upper deck above top of stiffener, m				
middle line	mm	mm	stiffener, m	0	0.6	1.2	1.8	2.4
					Mo	odulus, c	m³	
2.4	4.0	375	2.4	13.0	20.0	26.0	33.0	39.0

See associated notes

Table C.8: Outside and deck planking for motor. Sailing and auxiliary craft

Length, L, m	Basic thickness, mm
20	41.5

See associated notes

Table C.9: Fastenings for outside end deck planking in motor, sailing end auxiliary craft

					Size of	fastenin	igs		Number of fastenin				ngs per plank		
			Out	side pla	anking			0	Deck planking		Width of plank				
Planking thickness, mm	Gro	Grown, laminated or steel frames					frames	Wood screws		Bolt,	Under	100 mm	150 mm	180 mm	205mm and under 225mm
	Bolt,	Wood dia	d screws meter	Coop nails	er bolt s*size	Coop nail	oer bolt s size	dia	meter	mm	mm	and under 150mm	and under 180mm	and under 205mm	
	mm	mm	gauge	mm	gauge	mm	gauge	mm	gauge						
41.5	10	8	18	9.5	3.0	6	4	7	16	8	1	2	2	2	3

See associated notes

Table C.10: Beams and hanging knees for motor, sailing and auxiliary craft

Lengt h of	Spacin g of	Ord	inary beams	s 3/5L an	nidship	Ordinary beams beyond 3/5 amidship, half beam through			1 3/5L ughout	Beams in way of masts and at ends of deck openings			Strap hanging knees to deck beams					
beam	ordina	At r	niddle	At	ends	At r	niddle	At	ends	At r	niddle	At	ends		Length	of arm,	At	At
, m	ry														m	m	throa	point
	beams	Sidin	Mouldin	Sidin	Mouldin	Sidin	Mouldin	Sidin	Mouldin	Sidin	Mouldin	Sidin	Mouldin	Numb	For	Beyond	t,	, mm
	centre	g,	g, mm	g,	g, mm	g,	g, mm	g,	g, mm	g,	g, mm	g,	g, mm	er on	3/5L	3/5L	mm	
	to	mm		mm		mm		mm		mm		mm		each	amidsh	amidsh		
	centre,													side	ip	ip		
	mm																	
6.3	625	88	125	88	88	70	100	70	70	112	156	112	112	11	675	540	70x3	54x1
																	3	4

See associated notes

Table C.11: Longitudinal steel items for motor. sailing and auxiliary craft

Length, m	Upper deck sheerstrake and	Upper deck sheerstrake and	Upper deck tie plates, mm	Upper deck stringer angle,	cabin deck tie plates, mm	cabin deck stringer angle,
	stringer plate	stringer plate at		mm		mm
	3/5L amidship,	ends and cabin				
	mm	deck stringer				
		plate, mm				
20	410 x4,5	280 x4	140 x4.5	50 x50 x 5	90 x4	55 x55 x4

ALS.

			Upper deck be	ams, mm		Uŗ	oper deck l	peams, mm	
Length of beam, m	of beams, mm	Without pillars	Thickness of knee	With one row of pillars	Thickn ess of knee	Without pillars	Thickn ess of knee	With one row of pillars	Thickne ss of knee
6.3	545	140 x 75 x12	7.5	90 x 75 x6.5	6.5	135 x75 x7.5	7	75 x65 x6	6
				Ruk		Con			

Korpilor

Table C.12: Steel angle beams at upper and cabin decks for motor, sailing and auxiliary craft

Annex D (informative)

Sample scantling for hard chine hull

Main dimensions: Loa= 20m, Breath = 6.2m and Depth = 2.4m

Table D.1: Hard Chine vessels – Keel and Hog

		Keel		Нод				
Measured	Section			Section				
length	area	Siding	Moulding	area	Siding	Moulding		
m	mm ²	mm	mm	mm ²	mm	mm		
20	48600	180	270	35000	350	100		

Table D.2: Hard Chine Vessels Transom

		*Stiffeners		Margin			
Measured	Thickness						
length	plywood		Moulding	Siding	Moulding		
m	mm	mm	mm	mm	mm		
20	24	110	55	165	80		

Table D.3: Transom

		*Stiff	eners	Margin			
Measured							
length	Thickness	Siding	Moulding	Siding	Moulding		
m	mm	mm	mm	mm	mm		
20	58	110	55	165	80		

Table D.4: Transverse web frames

Transverse Web Frames									
Measured Web frames									
length	*Spacing	Siding	Moulding						
m	mm	mm	mm						
20	1250	65	170						

Table D.5: Hard Chine Vessels Floor

		*Floors				
Measu	Measured					
length	Siding	centre line				
m	mm	mm				
20	20 80					

Table D.6: Hard Chine vessels bottom stringers

Measured		Bottom stringers							
length	Spacing	Total section area per side	Moulding	Siding					
m	mm	mm²	mm	mm					
20	355	24192	42	96					

Table D.7: Hard Chine vessels Chines

	Vessels Chines									
Measured length	Sectional area	Siding	Moulding							
m	mm ²	mm	mm							
20	12168	78	156							

Table D.8: Chines and Stringers (Single planked hulls)

		Chines	5	Stringers			
Measured	Section	siding	moulding	Section area	siding	Moulding	

length	area			per side		
m	mm ²	mm	mm	mm²	mm	mm
20	18375	105	175	36750	175	70

Table D.9: Hard Chine Vessels - Beam Shelf/ Sheer Clamp

Measured length	Section area		
m	mm ²		
20	17200		

 Table
 D.10: Hard Chine Vessels - Hull Planking Thickness

Measured length	Bot	tom	Topside		
	Plywood	Double diagonal	Plywood	Double diagonal	
m	mm	mm	mm	mm	
20	31	44	23	33	

BCDC 12 (1829) DTZS

watto